K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

\(x^2\ge0\) với mọi x (1)

\(y^4\ge0\) với mọi y(2)

\(z^6\ge0\) với mọi z (3)

\(t^{1234567890}\ge0\) với mọi (t)

Từ (1) (2) (3) và  4 => \(x^2+y^4+z^6+t^{1234567890}\ge0\)

VẬy GTBT luôn dương

15 tháng 4 2019

−1≤x≤1;−1≤y≤1;−1≤z≤1⇔x2;y2;z2≤1 (1)

Trong 3 số x;y;zcó ít nhất 2 số cùng dấu(giả xử là x;y) ta có: xy≥0⇒2xy≥0(2)

x2+y4+z6=x2+y2.y2+z2.z2.z2≤x2+y2+z2(3)

ta sẽ chứng minh:

x2+y2+z2≤2 ta có: 

x2+y2+z2≤x2+y2+z2+2xy(từ (2) )

⇒x2+y2+z2≤(x+y)2+z2=(−z)2+z2=2z2≤2(từ (1)  )

⇒x2+y4+z6≤2(đpcm)(từ (3) )

(kết luận)

7 tháng 2 2020

gsddddddddddddddddddd

15 tháng 4 2019

−1≤x≤1;−1≤y≤1;−1≤z≤1⇔x2;y2;z2≤1 (1)

Trong 3 số x;y;zcó ít nhất 2 số cùng dấu(giả xử là x;y) ta có: xy≥0⇒2xy≥0(2)

x2+y4+z6=x2+y2.y2+z2.z2.z2≤x2+y2+z2(3)

ta sẽ chứng minh:

x2+y2+z2≤2 ta có: 

x2+y2+z2≤x2+y2+z2+2xy(từ (2) )

⇒x2+y2+z2≤(x+y)2+z2=(−z)2+z2=2z2≤2(từ (1)  )

⇒x2+y4+z6≤2(đpcm)(từ (3) )

 ..

9 tháng 2 2020

avt3105452_60by60.jpg Nam Mô Ki Ni 

28 tháng 7 2015

a) 5x2y4z6 \(\ge\) 0 vì mỗi thừa số đều lớn hơn hoặc bằng 0.

b) Khi x3y2 > x2y3 thì B luôn dương 

10 tháng 2 2020

cbfffffffffffffffffffffffffffffffffffffffsdhnc

10 tháng 2 2020

b gipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipụt

8 tháng 12 2017

\(1.\)

\(a.\)

\(\dfrac{x}{-150}=-\dfrac{6}{x}\)

\(\Rightarrow x^2=\left(-6\right)\left(-150\right)\)

\(\Rightarrow x^2=900\)

\(\Rightarrow x=\pm30\)

\(2.\)

\(a.\) \(2x=3y;5y=7z\)\(3x-7y+5z=30\)

Ta có : \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) \(\left(1\right)\)

\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) \(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\dfrac{x}{21}=2\Rightarrow x=42\)

\(\dfrac{y}{14}=2\Rightarrow y=28\)

\(\dfrac{z}{10}=2\Rightarrow z=20\)

Vậy : ..................

20 tháng 4 2018

Bài 1: Ta có: \(\left\{{}\begin{matrix}A=\left(-3x^5y^3\right)^4\ge0\\B=2x^2z^4\ge0\end{matrix}\right.\) với mọi x

Để $A+B=0$ thì \(\left\{{}\begin{matrix}\left(-3x^5y^3\right)^4=0\\2x^2z^4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)

Bài 2: Ta có: \(\left|x-5\right|\ge0\) với mọi x

\(\Rightarrow-3\left|x-5\right|\le0\) với mọi x

Để biểu thức lớn nhất,thì \(-3\left|x-5\right|=0\)

\(\Rightarrow\left|x-5\right|=0\)

Vậy x=5

\(\Rightarrow x=5\)