K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

mk chứng mk căn 2+căn 7 lun nha

 Giả sử √2 + √7 = a (a ∈ Z) 
thế thì (√2 + √7)² = a² 
.......⇔ 9 + 2√14 = a² 
.......⇔ 2√14 = a² - 9 
.......⇔ √14 = (a² - 9) /2 
Do a hữu tỉ => (a² - 9) /2 hữu tỷ và √14 vô tỷ (vô lý) 
Do đó √2 + √7 vô tỷ

tk nha bạn

thank you bạn

(^_^)

25 tháng 6 2019

Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n 
√7= m/n 
⇒ 7 = m²/n² 
⇒ m² =7n² 
⇒ m² chia hết cho n² 
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n) 
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.

~ Mik ko có 2k5 nha , Hok tốt ~
#Gumball

Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n 
√7 = m/n 
⇒ 7 = m²/n² 
⇒ m² = 7n² 
⇒ m² chia hết cho n² 
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n) 
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.

5 tháng 6 2016

sach nang cao chuyen de toan 9 tap 1

5 tháng 6 2015

vì \(\sqrt{7}=2,645751311........\)

=> căn 7 là số vô tỉ

giả sử √7 là số hữu tỉ 
=> √7 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 7 = a²/b² 
<=> a² = b7² 
=> a² ⋮ 7 
7 nguyên tố 
=> a ⋮ 7 
=> a² ⋮ 49 
=> 7b² ⋮ 49
=> b² ⋮ 7
=> b ⋮ 7 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √7 là số vô tỉ

Giả sử √2018 là một số hữu tỉ thì tồn tại hai số nguyên m và n sao cho: m/n=√2018 (1) với m/n là phân số tối giản hay m và n có ước chung lớn nhất bằng .1

Khi đó từ (1)<=> m=n√2018<=>m^2=2018n^2 (2)

Từ đó suy ra m^2 chia hết cho 2018 nên m phải chia hết cho .2018 (3)

Do đó tồn tại số nguyên k sao cho .m=2018k

Thay vào (2) ta có thể suy ra n^2=2018k^2 hay .n=√2018k

Do k là số nguyên nên suy ra n không nguyên. Từ đây suy ra giả sử ban đầu là sai, tức là không có cặp số m,n nguyên nào để m/n=.√2018

 Vậy √2018 không là số hữu tỉ (√2018∉Q)

Giả sử \(\sqrt{2008}\) là số hữu tỉ, thế thì tồn tại các số nguyên dương m,n sao cho \(\sqrt{2008}=\frac{m}{n}\)(\(\frac{m}{n}\)tối giản và \(m,n\in Z;n\ne0\))

\(\Rightarrow\sqrt{2008}=\frac{m}{n}\Rightarrow2008=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\Rightarrow m^2=2008n^2\)

Suy ra \(m^2\) \(⋮2\Rightarrow m⋮2\)(1)⇒ ta có thể viết m=2k.

Thay m=2k, ta có: \(\left(2k\right)^2=2n^2\Rightarrow4k^2=2n^2\Rightarrow2k^2=n^2\)

\(\Rightarrow n^2⋮2\Rightarrow n⋮2\)(2)

Từ (1) và (2) suy ra trái với giải thiết \(\frac{m}{n}\)là phần số tối giản

Vậy \(\sqrt{2008}\)là số vô tỉ