K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

Có: \(-\left(a-b\right)^2\le0\) với mọi x

=> \(-a^2+2ab-b^2\le0\)

=>\(a^2+2ab+b^2\le2a^2+2b^2\) (cộng cả 2 vế với \(2a^2;2b^2\))

=>\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

2 tháng 8 2016

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)

\(\Leftrightarrow-\left(a^2-2ab+b^2\right)\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\)

dấu "=" xẩy ra khi  và chỉ khi a=b

Bất đẳng thức cần chứng minh tương đương với

\(a^2c^2+2abcd+b^2d^2\le a^2c^2+b^2c^2+a^2d^2+b^2d^2\)

\(\Leftrightarrow b^2c^2+a^2d^2\ge2abcd\)(luôn đúng)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=d

Bất đẳng thức cần chứng minh tương đương với

 a2c+ 2abcd  + b2d2  <  a2c+ b2c2 + a2d+b2d2

<=>b2d+  a2d> 2abcd (luôn đúng)

Vậy bất đẳng thức được chứng minh

Dấu = xảy ra khi a=b=c=d        k nha

21 tháng 4 2017

1. \(\left|x+5\right|-\left|1-2x\right|=x\left(1\right)\)

Với phương trình kiểu này thì phải lập bảng để xét dấu của x+5 và 1-2x ta có nghiệm của hai nhị thức để chúng bằng 0 lần lượt là -5 và 0,5. Bảng xét dấu:

Bất phương trình bậc nhất một ẩn

Ứng với bảng ta có 3 khoảng giá trịn của x ứng với ba phương trình sau.

* Với \(x< -5\) (khoảng đầu)

\(\left(1\right)\Leftrightarrow-\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow-x+2x-x=5+1\\ \Leftrightarrow0x=6\)

Phương trình vô nghiệm.

* Với \(-5\le x\le0,5\) (khoảng giữa)

\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow x+2x-x=1-5\\ \Leftrightarrow x=-2\)

\(x=-2\) thỏa mãn điều kiện nên ta lấy.

* Với \(x>0,5\) (khoảng cuối)

\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(2x-1\right)=x\\ \Leftrightarrow x-2x-x=-5-1\\\Leftrightarrow x=3 \)

\(x=3\) thỏa nãm điều kiện nên ta lấy.

Kết luận tập nghiệm của phương trình (1) là: \(S=\left\{-2;3\right\}\)

21 tháng 4 2017

Chứng minh bất đẳng thức:

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\\ \Rightarrow2a^2+2b^2\ge a^2+2ab_{ }+b^2\\ \Leftrightarrow2a^2+2b^2-a^2-b^2-2ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\\Leftrightarrow\left(a-b\right)^2\ge0\left(1\right)\)

Vì BĐT (2) luôn đúng với mọi a,b do đó ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

22 tháng 9 2020

\(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

VT : (a + b + c)2 + a2 + b2 + c2

= a2 + b2 + c2 + 2ab +2bc + 2ac + a2 + b2 + c2

= ( a2 + 2ab + b2 ) + (b2 + 2bc + c2) + ( a2 + 2ac + c2)

= (a + b)2 + (b + c)2 + (a + c)2 = VP

Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)(đpcm)

19 tháng 3 2019

a2≤ 2a2 ; b2≤ 2b2

=> a2 + b2 ≤ 2a2 + 2b2 ( = 2 ( a2 + b2 ) )

19 tháng 3 2019

\(\left(a^2+b^2\right)\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2-2a^2-2b^2\le0\)

\(\Leftrightarrow-a^2-b^2\le0\)

\(\Leftrightarrow-\left(a^2+b^2\right)\le0\)

\(a^2+b^2\ge0\Rightarrow-\left(a^2+b^2\right)\le0\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=0\)

10 tháng 9 2018

a ) Giả sử : \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow4\left(a^2+b^2\right)\ge2\left(a+b\right)^2\)

\(\Leftrightarrow4a^2+4b^2\ge2a^2+4ab+2b^2\)

\(\Leftrightarrow2a^2+2b^2\ge4ab\)

\(\Leftrightarrow2a^2+2b^2-4ab\ge0\)

\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2\ge0\) ( Điều này luôn đúng )

\(\Rightarrow\) Điều giả sử là đúng

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\left(đpcm\right)\)

b ) Giả sử : \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a+b+c\right)^2\)

\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2+2ab+2ac+2bc\right)\)

\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2\right)+6\left(ab+ac+bc\right)\)

\(\Leftrightarrow6\left(a^2+b^2+c^2\right)\ge6\left(ab+ac+bc\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

( Điều này luôn đúng )

\(\Rightarrow\) Điều giả sử là đúng

\(\Rightarrow\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\left(đpcm\right)\)

:D

10 tháng 9 2018

Thanks bạn và thanks luôn con ra đề học cùng lớp!

14 tháng 1 2018

Làm thông thường thoy; khai triển ra xog chuyển vế

\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)

\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)

\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))

Vậy bđt đã đc chứng minh

14 tháng 1 2018

cảm ơn nhiều nha. chúng ta kết bạn được không?

\(\Leftrightarrow2a^3+2b^3-a^3-ab^2-a^2b-b^3>=0\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b>=0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)>=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2>=0\)(luôn đúng)

NV
25 tháng 2 2020

Bạn tham khảo:

https://hoc24.vn/hoi-dap/question/862431.html

26 tháng 2 2020

E đọc câu đấy r nhưng k hiểu lắm nên ms hỏi ạ