K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2015

 

Ta thấy tổng trên có 50 số hạng .

Ta có:

1/101>1/150

1/102>1/150

...

1/149>1/150

1/150=1/150

=>1/101+1/102+...+1/149+1/150>1/150+1/150+...+1/150

                                                 ---50 số hạng 1/150-------

=>1/101+1/102+...+1/149+1/150>1/150.50

=>1/101+1/102+...+1/149+1/150>50/150

=>1/101+1/102+...+1/149+1/150>1/3

 

15 tháng 8 2017

Ta có : \(\frac{1}{101}\) > \(\frac{1}{150}\)

            \(\frac{1}{102}\) > \(\frac{1}{150}\)

 .....................................................

             \(\frac{1}{149}\) > \(\frac{1}{150}\)

=> \(\frac{1}{101}\) + \(\frac{1}{102}\) + .......... + \(\frac{1}{150}\) > \(\frac{1}{150}\) + \(\frac{1}{150}\) + .......... +  \(\frac{1}{150}\)( có 50 p/s ) = \(\frac{1}{150}\) . 50 = \(\frac{1}{3}\)(1)

Ta lại có : \(\frac{1}{151}\) > \(\frac{1}{200}\)

                \(\frac{1}{152}\) > \(\frac{1}{200}\)

   ............................................

                 \(\frac{1}{199}\)\(\frac{1}{200}\)

=> \(\frac{1}{151}\) + \(\frac{1}{152}\) + .................. + \(\frac{1}{200}\) > \(\frac{1}{200}\)\(\frac{1}{200}\) + ...................+ \(\frac{1}{200}\)(có 50 p/ )=\(\frac{1}{200}\) . 50 = \(\frac{1}{4}\)(2)

Từ (1) và (2) 

=> \(\frac{1}{101}\)\(\frac{1}{102}\) + \(\frac{1}{103}\) + ...................+ \(\frac{1}{200}\)>  \(\frac{1}{3}\) + \(\frac{1}{4}\) = \(\frac{4}{12}\) + \(\frac{3}{12}\) = \(\frac{7}{12}\)

Vậy A > \(\frac{7}{12}\)

30 tháng 4 2016

đặt B=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}>\frac{50}{150}=\frac{1}{3}\)

đặt C=\(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}>\frac{50}{200}=\frac{1}{4}\)

A=B+C>\(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

11 tháng 3 2017

caanf

12 tháng 5 2017

cái j đấy nhỉ????mk k hiểu?

Ta có : \(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{200}=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

 \(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)\(\left(đpcm\right)\)

8 tháng 6 2016

Chứng minh cái j đấy???

8 tháng 6 2016

A = 1/101 + 1/102 + 1/103 + ... + 1/199 + 1/200

A = ( 1/101 + 1/102 + 1/103 + ... + 1/150) + ( 1/151 + 1/152 + 1/153 + ... + 1/200)

                     ( 50 phân số)                                         ( 50 phân số)

A < 1/150 x 50 + 1/200 x 50

A < 1/3 + 1/4 

A < 7/12

Chứng tỏ A < 7/12