K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

Đặt A = \(n^6+n^4-2n^2=n^2\left(n^4++n^2-2\right)\)

=\(n^2\left(n^4-1+n^2-1\right)\)

=\(n^2\left[\left(n^2-1\right)\left(n^2+1\right)+n^2-1\right]\)

=\(n^2\left(n^2-1\right)\left(n^2+2\right)\)

+ Nếu n chẳn ta có n = 2k (k thuộc N)

A=\(4k^2\left(2k-1\right)\left(2k+1\right)\left(4k^2+2\right)=8k^2\left(2k-1\right)\left(2k+1\right)\left(2k^2+1\right)\)

Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)

A=\(\left(2k+1\right)^2.2k\left(2k+2\right)\left(4k^2+4k+1+2\right)\)

=\(4k\left(k+1\right)\left(2k+1\right)^2\left(4k^2+4k+3\right)\)

k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì \(n^2\) là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).

Suy ra:\(n^2+2\) chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.

AH
Akai Haruma
Giáo viên
31 tháng 8 2017

Lời giải:

Đặt \(A=n^6+n^4-2n^2\)

\(\Leftrightarrow A=n^2(n^2-1)(n^2+2)\)

Ta chứng minh \(A\vdots 9\)

\(\bullet\) Nếu \(n\equiv 0\pmod 3\Leftrightarrow n\vdots 3\Rightarrow n^2\vdots 9\Rightarrow A\vdots 9\)

\(\bullet\) Nếu \(n\equiv \pm 1\pmod 3\Rightarrow n^2\equiv 1\pmod 3\)

Do đó, \(\left\{\begin{matrix} n^2-1\equiv 0\pmod 3\\ n^2+2\equiv 0\pmod 3\end{matrix}\right.\Rightarrow (n^2-1)(n^2+1)\vdots 9\Rightarrow A\vdots 9\)

Từ hai TH trên suy ra \(A\vdots 9(1)\)

Ta chứng minh \(A\vdots 8\)

Viết lại: \(A=n^2(n-1)(n+1)(n^2+2)\)

\(\bullet n=4k\Rightarrow n\vdots 4\rightarrow n^2\vdots 8\Rightarrow A\vdots 8\)

\(\bullet n=4k+1\Rightarrow n-1=4k\vdots 4\)\(n+1=4k+2\vdots 2\Rightarrow A\vdots 8\)

\(\bullet n=4k+2\Rightarrow n\vdots 2\rightarrow n^2\vdots 4\)\(n^2+2\vdots 2\Rightarrow A\vdots 8\)

\(\bullet n=4k+3\Rightarrow n-1=4k+2\vdots 2\)\(n+1=4k+4\vdots 4\Rightarrow A\vdots 8\)

Từ các TH trên suy ra \(A\vdots 8(2)\)

Từ \((1),(2)\) mà $8,9$ nguyên tố cùng nhau nên \(A\vdots 72\) (đpcm)

2 tháng 1 2017

Đề sai rồi nhé. 82n-1 thì nếu n = 0 thì A là số thập phân sao chia hết cho 59 được. M sửa đề luôn nhé.

\(A=5^{n+2}+26.5^n+8^{2n+1}\)

\(=25.5^n+26.5^n+8.64^n\)

\(=5^n\left(25+26\right)+8.64^n\)

\(=5^n\left(59-8\right)+8.64^n\)

\(=59.5^n+8\left(64^n-5^n\right)\)

\(=59.5^n+8.\left(64-5\right)\left(64^{n-1}+64^{n-2}.5...\right)\)

\(=59.5^n+8.59.\left(64^{n-1}+64^{n-2}.5...\right)\)

Vậy A chia hết cho 59 với mọi n tự nhiên

2 tháng 1 2017

Đề sai rồi nhé. 82n-1 thì nếu n = 0 thì A là số thập phân sao chia hết cho 59 được. M sửa đề luôn nhé.

\(A=5^{n+2}+26.5^n+8^{2n+1}\)

\(=25.5^n+26.5^n+8.64^n\)

\(=5^n\left(25+26\right)+8.64^n\)

\(=5^n\left(59-8\right)+8.64^n\)

\(=59.5^n+8\left(64^n-5^n\right)\)

\(=59.5^n+8.\left(64-5\right)\left(64^{n-1}+64^{n-2}.5...\right)\)

\(=59.5^n+8.59.\left(64^{n-1}+64^{n-2}.5...\right)\)

Vậy A chia hết cho 59 với mọi n tự nhiên

25 tháng 7 2015

Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)

Ta có;

\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)

=> \(\frac{ad+bc}{bd}=m\)

=> ad + bc = mbd (10

Từ (1) => ad + bc chia hết cho b 

Mà bc chia hết cho b 

=> ad chia hết cho b

Mà (a,b) = 1

=> d chia hết cho b (2)

Từ (1) => ad + bc chia hết cho d 

Mà ad chia hết cho d 

=> bc chia hết cho d

Mà (c,d) = 1

=> b chia hết cho d (3)

Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)

14 tháng 2 2016

Làm được chưa

 

21 tháng 8 2019

Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)=\left(n+1\right)\left(n^2+2n\right)=\left(n+1\right)n\left(n+2\right)=n\left(n+1\right)\left(n+2\right)\)

\(n\left(n+1\right)\left(n+2\right)⋮3\)( tích 3 số tự nhiên liên tiếp chia hết cho 3)

\(n\left(n+1\right)⋮2\)(ích hai số tự nhiên liên tiếp chia hết cho 2)

Mà (2;3)=1

=> \(n\left(n+1\right)\left(n+2\right)⋮6\)

=>\(n^2\left(n+1\right)+2n\left(n+1\right)⋮6\)

Câu b em kiểm tra lại đề bài.