Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{-1}{4}x^3y^4.\frac{-4}{5}x^4y^3.\frac{1}{2}xy=\frac{1}{10}x^8y^8\)
vì x8y8> hoặc = 0
=>1/10x^8y^8> hoặc =0
vây 3 đơn thức này luôn luôn có giá trị dương
h cua 3 so > 0 thi ba so đó đều > 0 ak ??????? (VD: ba so: -1; -2; 3 ma h 3 so nay van > 0 do thoi)
Ta có: \(A.B.C=\frac{-1}{2}x^2yz^2\cdot\left(\frac{-3}{4}\right)xy^2z^2\cdot x^3y\)
\(=\left[\left(\frac{-1}{2}\right)\cdot\left(\frac{-3}{4}\right)\right]\left(x^2yz^2xy^2z^2x^3y\right)\)
\(=\frac{3}{8}x^6y^4z^4\)
Nếu cùng âm thì tích của chúng phải âm mà \(A.B.C=\frac{3}{8}x^6y^4z^4\ge0\)
Vậy các đơn thức A,B,C không thể cùng nhận giá trị âm
1/
Ta có \(\left(\frac{-1}{4}x^3y^4\right)\left(\frac{-4}{5}x^4y^3\right)\left(\frac{1}{2}xy\right)\)= \(\frac{1}{10}x^8y^8\ge0\)
Vậy ba đơn thức \(\frac{-1}{4}x^3y^4;\frac{-4}{5}x^4y^3;\frac{1}{2}xy\)không thể cùng có gt âm (đpcm)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
Giả sử A, B, C cùng nhận giá trị âm
Mà ABC=\(-\frac{1}{2}x^2yz^2.\left(-\frac{3}{4}\right)xy^2z^2.x^3y=\frac{3}{8}x^6y^4z^4\ge0\)
=> 3 số cùng dương hoặc 3 số phải cùng âm
=> Trái với giả thiết
=> Đpcm
Giả sử A,B,C cùng nhận giá trị âm
Suy ra tích của chúng <o
Mà\(ABC=\frac{-1}{2}x^2yz^2\frac{-3}{4}xy^2z^2x^3y=\frac{3}{8}x^6y^4z^4>0\)
Suy ra mâu thuẫn
Suy ra.........................(đpcm)
\(\left(-\frac{1}{2}x^2y^3\right).\left(-\frac{3}{4}xy^2\right).\left(16x^5y\right)\)
\(=-\frac{x^2y^3}{2}.\frac{-3}{4}xy^2.16x^5y=\frac{-x^2y^3.\left(-3xy^2\right).16x^5y}{2.4}\)
\(=-\frac{-48x^2xx^5y^3y^2y}{8}=-\frac{-48x^8y^6}{8}\)
\(=\frac{48x^8y^6}{8}=6x^8y^6\)
Vậy 3 đơn thức ko thể cùng có giá trị âm
xét tích :
\(\left(\frac{-1}{4}x^3y^4\right).\left(\frac{-4}{5}x^4y^3\right).\left(\frac{1}{2}xy\right)\)
\(=\frac{1}{10}x^8y^8\)
vì x8 \(\ge\)0 ; y8 \(\ge\)0 nên \(\frac{1}{10}x^8y^8\)\(\ge\)0 nên ....