K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

Biến đổi vế trái ta có: 

\(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3\)

\(=a^3+b^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)+c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

=>đpcm

(a+b+c)3=[(a+b)+c]3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)[ab+c(a+b+c)]
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)

==a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]

=a3+b3+c3+3(a+b)(a+c)(b+c)

25 tháng 6 2019

#)Giải :

\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+ca+c^2\right)\)

\(=a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=\left(a+b^3\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=\left(a+b+c\right)^3\)

\(\Rightarrowđpcm\)

25 tháng 7 2017

Ta có \(VT=\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+3\left(a+b\right)^2.c+3\left(a+b\right)c^2+c^3\)

\(=a^3+3a^2b+3ab^2+b^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left[\left(a+b\right)c+c^2+ab\right]\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)\right]+c\left(b+c\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

Vậy \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

6 tháng 7 2015

(a+b+c)^3=((a+b)+c)^3=(a+b)^3+c^3+3(a+b)c(a+b+c)
=a^3+b^3+3ab(a+b)+c^3+3(a+b)c(a+b+c)
=a^3+b^3+c^3+3(a+b)(ab+c(a+b+c))
=a^3+b^3+c^3+3(a+b)(ab+ac+bc+c^2)
=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

17 tháng 9 2018

có tính chất (a+b)n=an+bn à.nếu có chứng minh?

16 tháng 9 2016

b) Ta có : a\(^2\)+ b\(^2\)+ c\(^2\) =ab+bc+ca

=> 2(a\(^2\)+b\(^2\)+c\(^2\))= 2(ab+bc+ca)

<=>2a\(^2\)+2b\(^2\)+2c\(^2\)=2ab+2bc+2ca

<=> 2a\(^2\)+2b\(^2\)+2c\(^2\)-2ab-2bc-2ca=0

<=> a\(^2\)+a\(^2\)+b\(^2\)+b\(^2\)+c\(^2\)+c\(^2\)-2ab-2bc=2ca=0

<=> (a\(^2\)-2ab+b\(^2\))+(b\(^2\)-2bc+b\(^2\))+(a\(^2\)-2ca+c\(^2\))

<=> (a-b)\(^2\)+(b-c)\(^2\)+(a-c)\(^2\) =a

<=> hoặc a-b=0 hoặc b-c=o hoặc a-c=o <=>a=b hoặc b=c hoặc a=c

=>a=b=c (đpcm)

16 tháng 9 2016

a) Theo đề bài: \(a^2+b^2=ab\)

=>\(a^2+b^2-ab=0\)

=>\(a^2-2ab+b^2+ab=0\)

=>\(\left(a-b\right)^2+ab=0\)

Vì \(\left(a-b\right)^2\ge0\)  để \(\left(a-b\right)^2+ab=0\) <=> \(\left(a-b\right)^2=ab=0\)

(a-b)2=0 <=> a-b=0 <=> a=b (đpcm)

b)\(a^2+b^2+c^2=ab+bc+ca\)

=>\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

=>\(2a^2+2b^2+2c^2=2ab+2bc+2ac\)

=>\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Vì \(\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(a-c\right)^2\ge0\end{cases}\) để \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

<=>\(\left(a-b\right)^2=\left(b-c\right)^2=\left(a-c\right)^2=0\)

<=>a-b=b-c=a-c=0

<=>a=b=c (đpcm)

22 tháng 9 2018

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

=> ĐPCM

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)^2+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-\left(3a^2b+3abc+3ab^2\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2-3ab\right]\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

=> ĐPCM

P/s: Có sao sót xin bỏ qua

22 tháng 9 2018

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3\left(a+b\right)^2\cdot c+3\left(a+b\right)c^2+c^3\)\(-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3a^2b+3ab^2+3\left(a^2+2ab+b^2\right)c\)\(+3ac^2+3bc^2-a^3-b^3-c^3\)

\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)

\(=\left(3abc+3a^2c+3b^2c+3bc^2\right)\)\(+\left(3a^2b+3a^2c+3ab^2+3abc\right)\)

\(=c\left(3ab+3ac+3b^2+3bc\right)\)\(+a\left(3ab+3ac+3b^2+3bc\right)\)

\(=\left(a+c\right)\left[\left(3ab+3b^2\right)+\left(3ac+3bc\right)\right]\)

\(=\left(a+c\right)\left[3b\left(a+b\right)+3c\left(a+b\right)\right]\)

\(=3\left(a+c\right)\left(a+b\right)\left(b+c\right)\)

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)( do \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\))

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]\)\(-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ab-ac\right)\)\(-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

29 tháng 6 2019

#)Giải :

Ta có : \(\left(a+b+c\right)^3\)

\(=\left(\left(a+b\right)+c\right)^3\)

\(=\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=a^3+b^3+3\left(a+b\right)\left(ab+c\left(a+b+c\right)\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

Hay chính là \(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrowđpcm\)

29 tháng 6 2019

ta có:

VT=(a+b+c)^3=[(a+b)+c]^3

                  =(a+b)^3+c^3+3(a+b)c(a+b+c)

                 =a^3+b^3+c^3+3ab(a+b)+3c(a+b+c)(a+b)

                 =a^3+b^3+c^3+3(a+b)(ab+ac+cb+c^2)

                 =a^3+b^3+c^3+3(a+b)(b+c)(c+a)

=>VT=VP( đpcm)