Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
a, Có \(2x^2\ge0\) Vx
\(2x^2+3\ge3>0\) Vx
=> 2x2+3 ko có nghiệm
b, Có \(-x^4\le0\) Vx
\(-3x^2\le0\) Vx
=> -x4-3x2-7 \(\le\) 7 <0 Vx
=> -x4-3x2-7 ko có nghiệm
Câu 1:
a, Ta có: \(x^2-2x=0\)
\(\Rightarrow x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy x = 0 hoặc x = 2 là nghiệm của \(x^2-2x\)
b, Ta có: \(x^3-3x=0\)
\(\Rightarrow x\left(x^2-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\end{matrix}\right.\)
Vậy \(x=0;x=\sqrt{3}\) là nghiệm của \(x^3-3x\)
Câu 2:
a, Ta có: \(x^4+2x^2+1=\left(x^2+1\right)^2\)
Ta thấy: \(x^2+1\ge1\)
\(\Rightarrow\left(x^2+1\right)^2\ge1>0\)
\(\Rightarrow x^4+2x^2+1\) vô nghiệm
Vậy đa thức \(x^4+2x^2+1\) không có nghiệm
b, Ta có: \(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Ta thấy \(\left(x+1\right)^2+2\ge2>0\)
\(\Rightarrow x^2+2x+3\) vô nghiệm
Vậy \(x^2+2x+3\) không có nghiệm
c, \(x^2+6x+10=x^2+6x+9+1=\left(x+3\right)^2+1\)
Ta có: \(\left(x+3\right)^2+1\ge1>0\)
\(\Rightarrow x^2+6x+10\) vô nghiệm
Vậy đa thức \(x^2+6x+10\) không có nghiệm
Bài 1:
a/Ta có: \(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\Rightarrow x=2\end{matrix}\right.\)
b/Có: \(x^3-3x=0\)
\(\Leftrightarrow x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-3=0\Rightarrow x^2=3\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\end{matrix}\right.\)
Bài 2:
a/ \(x^4+2x^2+1\) \(=\left(x^2\right)^2+2x^2\cdot1+1^2=\left(x^2+1\right)^2\)
\(Vì\) \(x^2\ge0\forall x\Rightarrow x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\) => Đa thức vô nghiệm (đpcm)
b/ \(x^2+2x+3=x^2+2x\cdot1+1+2=\left(x+1\right)^2+2\)
Có: \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2>0\)
=> đa thức vô nghiệm (đpcm)
c/ \(x^2+6x+10=x^2+2\cdot x\cdot3+9+1=\left(x+3\right)^2+1\)
Có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow\left(x+3\right)^2+1\ge1>0\)
=> đa thức vô nghiệm (đpcm)
\(A\left(x\right)=x^2-4x+7\)
\(A\left(x\right)=0\Leftrightarrow x^2-4x+7=0\Leftrightarrow x^2-2x-2x+4+3=0\)
\(\Leftrightarrow x\left(x-2\right)-2\left(x-2\right)+3=0\Leftrightarrow\left(x-2\right)^2+3=0\left(1\right)\)
Vì \(\left(x-2\right)^2+3\ge3>0\) với mọi x E R
=>(1) không xảy ra
=>A(x) vô nghiệm (đpcm)
\(p\left(x\right)=x^4+x^3+x+1\)
\(p\left(x\right)=0\Leftrightarrow x^4+x^3+x+1=0\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\Leftrightarrow\int^{x^3+1=0}_{x+1=0}\Leftrightarrow\int^{x^3=-1}_{x=-1}\Leftrightarrow x=-1\)
Vậy............................
\(x^4+7\ge7>0\) Với mọi x )
Vì dấu đẳng thức không xảy ra nên ta được đpcm
\(x^2-2x+3=x^2-2x+1+2=\left(x-1\right)^2+2\ge2>0\) (với mọi x)
Giải thích tương tự như trên