Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha< 0;cot\alpha>0;tan\alpha>0\).
Vì vậy: \(sin\alpha=-\sqrt{1-cos^2\alpha}=\dfrac{-\sqrt{15}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{15}}{4}:\dfrac{-1}{4}=\sqrt{15}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\sqrt{15}}\).
b) Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(cos\alpha< 0;tan\alpha< 0;cot\alpha< 0\).
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{5}}{3}\);
\(tan\alpha=\dfrac{2}{3}:\dfrac{-\sqrt{5}}{3}=\dfrac{-2}{\sqrt{5}}\); \(cot\alpha=1:tan\alpha=\dfrac{-\sqrt{5}}{2}\).
a)\(sin^4\dfrac{\pi}{16}+sin^4\dfrac{3\pi}{16}+sin^4\dfrac{5\pi}{16}+sin^4\dfrac{7\pi}{16}\)
\(=\left(sin^4\dfrac{\pi}{16}+sin^4\dfrac{7\pi}{16}\right)+\left(sin^4\dfrac{3\pi}{16}+sin^4\dfrac{5\pi}{16}\right)\)
\(=\left(sin^4\dfrac{\pi}{16}+cos^4\dfrac{\pi}{16}\right)+\left(sin^4\dfrac{3\pi}{16}+cos^4\dfrac{3\pi}{16}\right)\)
\(=1-2sin^2\dfrac{\pi}{16}cos^2\dfrac{\pi}{16}+1-2sin^2\dfrac{3\pi}{16}cos^2\dfrac{3\pi}{16}\)
\(=2-\dfrac{1}{2}sin^2\dfrac{\pi}{8}-\dfrac{1}{2}sin^2\dfrac{3\pi}{8}\)
\(=2-\dfrac{1}{2}\left(sin^2\dfrac{\pi}{8}+sin^2\dfrac{3\pi}{8}\right)\)
\(=2-\dfrac{1}{2}\left(sin^2\dfrac{\pi}{8}+cos^2\dfrac{\pi}{8}\right)\)
\(=2-\dfrac{1}{2}=\dfrac{3}{2}\).
Có: \(cotx-tanx=\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=\dfrac{cos^2x-sin^2x}{sinxcosx}=\dfrac{2cos2x}{sin2x}\)
Vì vậy:
\(cot7,5^o+tan67,5^o-tan7,5^o-cot67,5^o\)
\(=\left(cot7,5^o-tan7,5^o\right)-\left(cot67,5^o-tan67,5^o\right)\)
\(=\dfrac{2cos15^o}{sin15^o}-\dfrac{2cos135^o}{sin135^o}\)
\(=2\left(\dfrac{cos15^osin135^o-sin15^ocos135^o}{sin15^osin135^o}\right)\)
\(=2.\dfrac{sin120^o}{\dfrac{1}{2}\left(cos120^o-cos150^o\right)}\)
\(=\dfrac{4.\dfrac{\sqrt{3}}{2}}{\dfrac{-1}{2}+\dfrac{\sqrt{3}}{2}}=\dfrac{4\sqrt{3}}{\sqrt{3}-1}\)
a) Do 0 < α < nên sinα > 0, tanα > 0, cotα > 0
sinα =
cotα = ; tanα =
b) π < α < nên sinα < 0, cosα < 0, tanα > 0, cotα > 0
cosα = -√(1 - sin2 α) = -√(1 - 0,49) = -√0,51 ≈ -0,7141
tanα ≈ 0,9802; cotα ≈ 1,0202.
c) < α < π nên sinα > 0, cosα < 0, tanα < 0, cotα < 0
cosα = ≈ -0,4229.
sinα =
cotα = -
d) Vì < α < 2π nên sinα < 0, cosα > 0, tanα < 0, cotα < 0
Ta có: tanα =
cosα =
Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha,cos\alpha< 0;tan\alpha,cot\alpha< 0\).
\(cos\left(\alpha-\dfrac{\pi}{2}\right)=cos\left(\dfrac{\pi}{2}-\alpha\right)=sin\alpha< 0\).
\(sin\left(\dfrac{\pi}{2}+\alpha\right)=cos\alpha< 0\).
\(tan\left(\dfrac{3\pi}{2}-\alpha\right)=tan\left(\dfrac{3\pi}{2}-\alpha-2\pi\right)\)\(=tan\left(-\dfrac{\pi}{2}-\alpha\right)\)\(=-tan\left(\dfrac{\pi}{2}+\alpha\right)=cot\left(\alpha\right)>0\).
\(cot\left(\alpha+\pi\right)=cot\left(\alpha\right)>0\).
Có:
\(\left\{{}\begin{matrix}sin^2\alpha+cos^2\alpha=1\\sin\alpha=\dfrac{8}{17}\\0< \alpha< \dfrac{\pi}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}cos^2\alpha=1-\left(\dfrac{8}{17}\right)^2\\sin\alpha=\dfrac{8}{17}\\cos\alpha,sin\alpha>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cos\alpha=\dfrac{15}{17}\\sin\alpha=\dfrac{8}{17}\end{matrix}\right.\).
Tương tự: \(\left\{{}\begin{matrix}sin\beta=\dfrac{15}{17}\\cos\beta=\dfrac{8}{17}\end{matrix}\right.\).
Có:\(sin\left(\alpha+\beta\right)=sin\alpha cos\beta+cos\alpha sin\beta\)\(=\left(\dfrac{8}{17}\right)^2+\left(\dfrac{15}{17}\right)^2=1\) và \(0< \alpha< \dfrac{\pi}{2};0< \beta< \dfrac{\pi}{2}\) nên: \(\alpha+\beta=\dfrac{\pi}{2}\).
Cách lập luận khác: \(sin\alpha=cos\beta\) và \(0< \alpha< \dfrac{\pi}{2};0< \beta< \dfrac{\pi}{2}\) nên: \(\alpha+\beta=\dfrac{\pi}{2}\).
\(\pi< a< \dfrac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\)
\(sin\left(\dfrac{7\pi}{2}+a\right)=sin\left(4\pi-\dfrac{\pi}{2}+a\right)=sin\left(-\dfrac{\pi}{2}+a\right)=-sin\left(\dfrac{\pi}{2}-a\right)=-cosa>0\)
Đáp án A