K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

số dư là 0

9 tháng 5 2016

Bài này không có đư bởi vậy số đư là 0

1 tháng 6 2015

Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2(k \(\in\) N)

Nếu q=3k+1 thì p=3k+3 nên p chia hết cho 3.Loại vì p là số nguyên tố lớn hơn 3.

Khi q=3k+2 thì p=3k+4

Vì q là số nguyên tố lớn hơn 3 nên k lẻ

Ta có p+q=6(k+1), chia hết cho 12 vì k+1 chẵn

Vậy số dư khi chia p+q cho 12 =0

p;q là các số nguyên tố >3 =>q=3k+1;3k+2

xét q=3k+1 =>p=3k+3=3(k+1) chia hết cho 3   (trái giả thuyết)

=>q=3k+2=>p=3k+2+2=3k+4

=>p+q=3k+2+3k+4=6k+6=6(k+1)

q= 3k+2 không chia hết cho 2

=>3k không chia hết cho 2

=>k không chia hết cho 2

=>k+1 chia hết cho 2=>k+1=2a

=>p+q=6(k+1)=6.2a=12a chia hết cho 12

vậy p+q chia hết cho 12

23 tháng 4 2016

(p+q):12 dư 0

VD: p=7;q=5 (5+7):12 dư 0

26 tháng 4 2016

chia hết dư 0

14 tháng 4 2015

mình chỉ chứng minh dc p+q chia hết ch 6 thôi

14 tháng 4 2015

Chứng minh : p+q chia hết cho 4. Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p, q sẽ có dạng 4k+1 và 4k+3. -> p+q chia hêt cho 4.

Vì p,q là số nguyên tố > 3 nên p,q chỉ có thể chia 3 dư 1 hoặc 2. p=3k+1 -> q=3k+3 chia hết cho 3 loại; p=3k+2 -> q= 3k+1 Nên p+q chia hết cho 3.

---> p+q chia hết cho 12

12 tháng 3 2016

ví dụ là đúng nhất:

thử lấy p=5 xem, nếu thế thì p=7(vẫn là số nguyên tố);(5+7):12=1(dư 0)

           p=13 thì p=15;(13+15):12=2(dư 4)

Chắc thế,hi hi

13 tháng 3 2016

không dư

số dư là 0

24 tháng 8 2018

( p+q ) : 12 dư 0

Hk tốt

24 tháng 8 2018

Vì q có là số nguyên tố nên q có dạng 3k + 1 hoặc 3k + 2 ( k \(\in\) N )

Nếu q = 3k + 1 thì q = 3k + 3 nên p  \(\vdots\) 3 . Loại vì p là số nguyên tố > 3

Khi q = 3k + 2 thì p = 3k + 4

Vì q là số nguyên tố > 3 nên k lẻ

Ta có:

p + q = 6(k + 1),chia hết cho 12 vì k + 1 chẵn

Vậy số dư khi p + q cho 12 là 0

4 tháng 12 2015

bài 5:

Chứng minh :p+q chia hết cho 4 .Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p.q sẽ có dạng 4k+1 và 4k+3 suy ra p+q chia hết cho 4

Vi p,q là só nguyên tố >3 nêp,q chỉ có thể chia 3 dưa 1 hoặc 2 p=4k+1 suy ra q=3k+3 chia hết cho 3 loại p=3k+2 suy ra q=3k+1 nên p+q chia hết cho 3

suy ra p+q chia hêt cho 12

4 tháng 11 2023

Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2. (\(k\in N\)*)

Nếu q=3k+1 thì p=q+2=3k+3. Khi đó p chia hết cho 3 nên không phải số nguyên tố (loại)

Nếu q=3k+2 thì p=q+2=3k+4. Khi đó p+q=6k+6=6(k+1)

Vì q=3k+2 là số nguyên tố nên k là số lẻ (nếu k chẵn thì q chia hết cho 2). Khi đó k có dạng 2m+1 (\(m\in N\)*)

Suy ra p+q=6(2m+1+1)=12(m+1) chia hết cho 12 (đpcm)

 

21 tháng 10 2015

1.

Vì p là số nguyên tố lớn hơn3

=>p có 2 dạng là 3k+1 và 3k+2

*Xét p=3k+1=>8p+1=8.(3k+1)+1=8.3k+8+1=3.8k+9=3.(8k+3) là hợp số

=>Vô lí

*Xét p=3k+2=>8p+1=8.(3k+2)+1=8.3k+16+1=3.8k+17=3.(8k+5)+2 là số nguyên tố

Khi đó: 8p-1=8.(3k+2)-1=8.3k+16-1=3.8k+15=3.(8k+5) là hợp số

Vậy 8p-1 là hợp số

2.

Vì p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p+1 là số chẵn

=>p+1 chia hết cho 2(1)

Vì p là số nguyên tố lớn hơn 3

=>p có 2 dạng là 3k+1 và 3k+2

*Xét p=3k+1=>p+2=3k+1+2=3k+3=3.(k+1) là hợp số

=>Vô lí

*Xét p=3k+2=>p+2=3k+2+2=3k+4=3.(k+1)+1 là số nguyên tố

Khi đó: p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3

=>p+1 chia hết cho 3(2)

Từ (1) và (2) ta thấy:

p+1 chia hết cho 2 và 3

mà (2,3)=1

=>p+1 chia hết cho 2.3

=>p+1 chia hết cho 6

Vậy p+1 là bội của 6