Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2(k \(\in\) N)
Nếu q=3k+1 thì p=3k+3 nên p chia hết cho 3.Loại vì p là số nguyên tố lớn hơn 3.
Khi q=3k+2 thì p=3k+4
Vì q là số nguyên tố lớn hơn 3 nên k lẻ
Ta có p+q=6(k+1), chia hết cho 12 vì k+1 chẵn
Vậy số dư khi chia p+q cho 12 =0
p;q là các số nguyên tố >3 =>q=3k+1;3k+2
xét q=3k+1 =>p=3k+3=3(k+1) chia hết cho 3 (trái giả thuyết)
=>q=3k+2=>p=3k+2+2=3k+4
=>p+q=3k+2+3k+4=6k+6=6(k+1)
q= 3k+2 không chia hết cho 2
=>3k không chia hết cho 2
=>k không chia hết cho 2
=>k+1 chia hết cho 2=>k+1=2a
=>p+q=6(k+1)=6.2a=12a chia hết cho 12
vậy p+q chia hết cho 12
Chứng minh : p+q chia hết cho 4. Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p, q sẽ có dạng 4k+1 và 4k+3. -> p+q chia hêt cho 4.
Vì p,q là số nguyên tố > 3 nên p,q chỉ có thể chia 3 dư 1 hoặc 2. p=3k+1 -> q=3k+3 chia hết cho 3 loại; p=3k+2 -> q= 3k+1 Nên p+q chia hết cho 3.
---> p+q chia hết cho 12
ví dụ là đúng nhất:
thử lấy p=5 xem, nếu thế thì p=7(vẫn là số nguyên tố);(5+7):12=1(dư 0)
p=13 thì p=15;(13+15):12=2(dư 4)
Chắc thế,hi hi
Vì q có là số nguyên tố nên q có dạng 3k + 1 hoặc 3k + 2 ( k \(\in\) N )
Nếu q = 3k + 1 thì q = 3k + 3 nên p \(\vdots\) 3 . Loại vì p là số nguyên tố > 3
Khi q = 3k + 2 thì p = 3k + 4
Vì q là số nguyên tố > 3 nên k lẻ
Ta có:
p + q = 6(k + 1),chia hết cho 12 vì k + 1 chẵn
Vậy số dư khi p + q cho 12 là 0
bài 5:
Chứng minh :p+q chia hết cho 4 .Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p.q sẽ có dạng 4k+1 và 4k+3 suy ra p+q chia hết cho 4
Vi p,q là só nguyên tố >3 nêp,q chỉ có thể chia 3 dưa 1 hoặc 2 p=4k+1 suy ra q=3k+3 chia hết cho 3 loại p=3k+2 suy ra q=3k+1 nên p+q chia hết cho 3
suy ra p+q chia hêt cho 12
Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2. (\(k\in N\)*)
Nếu q=3k+1 thì p=q+2=3k+3. Khi đó p chia hết cho 3 nên không phải số nguyên tố (loại)
Nếu q=3k+2 thì p=q+2=3k+4. Khi đó p+q=6k+6=6(k+1)
Vì q=3k+2 là số nguyên tố nên k là số lẻ (nếu k chẵn thì q chia hết cho 2). Khi đó k có dạng 2m+1 (\(m\in N\)*)
Suy ra p+q=6(2m+1+1)=12(m+1) chia hết cho 12 (đpcm)
1.
Vì p là số nguyên tố lớn hơn3
=>p có 2 dạng là 3k+1 và 3k+2
*Xét p=3k+1=>8p+1=8.(3k+1)+1=8.3k+8+1=3.8k+9=3.(8k+3) là hợp số
=>Vô lí
*Xét p=3k+2=>8p+1=8.(3k+2)+1=8.3k+16+1=3.8k+17=3.(8k+5)+2 là số nguyên tố
Khi đó: 8p-1=8.(3k+2)-1=8.3k+16-1=3.8k+15=3.(8k+5) là hợp số
Vậy 8p-1 là hợp số
2.
Vì p là số nguyên tố lớn hơn 3
=>p là số lẻ
=>p+1 là số chẵn
=>p+1 chia hết cho 2(1)
Vì p là số nguyên tố lớn hơn 3
=>p có 2 dạng là 3k+1 và 3k+2
*Xét p=3k+1=>p+2=3k+1+2=3k+3=3.(k+1) là hợp số
=>Vô lí
*Xét p=3k+2=>p+2=3k+2+2=3k+4=3.(k+1)+1 là số nguyên tố
Khi đó: p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3
=>p+1 chia hết cho 3(2)
Từ (1) và (2) ta thấy:
p+1 chia hết cho 2 và 3
mà (2,3)=1
=>p+1 chia hết cho 2.3
=>p+1 chia hết cho 6
Vậy p+1 là bội của 6
số dư là 0
Bài này không có đư bởi vậy số đư là 0