K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

a) Đúng.

Hai vec tơ đối nhau thì chúng có hoành độ đối nhau và tung độ đối nhau.

Giải bài 10 trang 28 sgk Hình học 10 | Để học tốt Toán 10

b) Sai.

Sửa lại: Vec tơ a cùng phương với vec tơ i nếu a có tung độ bằng 0.

Giải bài 10 trang 28 sgk Hình học 10 | Để học tốt Toán 10

c) Đúng.

Giải bài 10 trang 28 sgk Hình học 10 | Để học tốt Toán 10

19 tháng 9 2021

D

19 tháng 9 2021

D

1 tháng 7 2018

a) Đúng

b) Đúng

c) Sai

d) Đúng

17 tháng 2 2021

TL: A, B, D: Đúng; C: Sai

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Lời giải:
Giả sử 3 vecto trên đôi một ngược hướng nhau

\(\overrightarrow{a}, \overrightarrow{b}\) ngược hướng 

$\overrightarrow{c},\overrightarrow{b}$ ngược hướng

$\Rightarrow \overrightarrow{a}, \overrightarrow{c}$ cùng ngược hướng với $\overrightarrow{b}$

$\Rightarrow \overrightarrow{a}, \overrightarrow{c}$ cùng hướng (trái giả sử)

Vậy ít nhất 2 trong số 3 vecto cùng hướng.

 

AH
Akai Haruma
Giáo viên
27 tháng 8 2020

Câu 1:

Đáp án A. Vecto $\overrightarrow{0}$ là vecto duy nhất cùng phương với mọi vecto.

Câu 2:

Đáp án C. Hai vecto bằng nhau thì cùng hướng chứ không chỉ đơn thuần có giá trùng/ song song với nhau.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Hai vecto \(k\left( {t\overrightarrow u } \right)\) và \(\left( {kt} \right)\overrightarrow u \) có cùng độ dài bằng \(\left| {kt} \right|.\left| {\overrightarrow u } \right|\)

Ta có: \(\left| {t\overrightarrow u } \right| = \left| t \right|\left| {\overrightarrow u } \right| \Rightarrow \left| {k\left( {t\overrightarrow u } \right)} \right| = \left| k \right|\left| {\left( {t\overrightarrow u } \right)} \right| = \left| k \right|.\left| t \right|\left| {\overrightarrow u } \right| = \left| {kt} \right|\left| {\overrightarrow u } \right|\)

Và \(\left| {\left( {kt} \right)\overrightarrow u } \right| = \left| {kt} \right|\left| {\overrightarrow u } \right|\)

\( \Rightarrow \left| {k\left( {t\overrightarrow u } \right)} \right| = \left| {\left( {kt} \right)\overrightarrow u } \right| = \left| {kt} \right|\left| {\overrightarrow u } \right|\)

b) Nếu \(kt \ge 0\) thì cả hai vecto \(k\left( {t\overrightarrow u } \right)\), \(\left( {kt} \right)\overrightarrow u \) cùng hướng với \(\overrightarrow u \)

Ta xét 2 trường hợp:

Trường hợp 1: \(k \ge 0,t \ge 0\)

Vecto \(k\left( {t\overrightarrow u } \right)\) cùng hướng với vecto \(t\overrightarrow u \) (vì \(k \ge 0\) ), mà vecto \(t\overrightarrow u \) cùng hướng với vecto \(\overrightarrow u \) (vì \(t \ge 0\) )

Do đó vecto \(k\left( {t\overrightarrow u } \right)\) cùng hướng với vecto \(\overrightarrow u \).

Trường hợp 2: \(k < 0,t < 0\)

Vecto \(k\left( {t\overrightarrow u } \right)\) ngược hướng với vecto \(t\overrightarrow u \) (vì \(k < 0\) ), mà vecto \(t\overrightarrow u \) ngược hướng với vecto \(\overrightarrow u \) (vì \(t < 0\) )

Do đó vecto \(k\left( {t\overrightarrow u } \right)\) cùng hướng với vecto \(\overrightarrow u \).

Vậy vecto \(k\left( {t\overrightarrow u } \right)\) luôn cùng hướng với vecto \(\overrightarrow u \) nếu \(kt \ge 0\).

Lại có: \(kt \ge 0\) nên \(\left( {kt} \right)\overrightarrow u \) cùng hướng với \(\overrightarrow u \)

Vậy \(kt \ge 0\) thì cả hai vecto \(k\left( {t\overrightarrow u } \right)\), \(\left( {kt} \right)\overrightarrow u \) cùng hướng với \(\overrightarrow u \)

c) Nếu \(kt < 0\) thì cả hai vecto \(k\left( {t\overrightarrow u } \right)\), \(\left( {kt} \right)\overrightarrow u \) ngược hướng với \(\overrightarrow u \)

Ta xét 2 trường hợp:

Trường hợp 1: \(k > 0,t < 0\)

Vecto \(k\left( {t\overrightarrow u } \right)\) cùng hướng với vecto \(t\overrightarrow u \) (vì \(k > 0\) ), mà vecto \(t\overrightarrow u \) ngược hướng với vecto \(\overrightarrow u \) (vì \(t < 0\))

Do đó vecto \(k\left( {t\overrightarrow u } \right)\) ngược hướng với vecto \(\overrightarrow u \).

Trường hợp 2: \(k < 0,t > 0\)

Vecto \(k\left( {t\overrightarrow u } \right)\) ngược hướng với vecto \(t\overrightarrow u \) (vì \(k < 0\) ), mà vecto \(t\overrightarrow u \) cùng hướng với vecto \(\overrightarrow u \) (vì \(t > 0\))

Do đó vecto \(k\left( {t\overrightarrow u } \right)\) ngược hướng với vecto \(\overrightarrow u \).

Vậy vecto \(k\left( {t\overrightarrow u } \right)\) luôn ngược hướng với vecto \(\overrightarrow u \) nếu \(kt < 0\).

Lại có: \(kt < 0\) nên \(\left( {kt} \right)\overrightarrow u \) ngược hướng với \(\overrightarrow u \)

Vậy \(kt < 0\) thì cả hai vecto \(k\left( {t\overrightarrow u } \right)\), \(\left( {kt} \right)\overrightarrow u \) ngược hướng với \(\overrightarrow u \)

d)

Từ ý b) và c), ra suy ra hai vecto \(k\left( {t\overrightarrow u } \right)\) và \(\left( {kt} \right)\overrightarrow u \)luôn cùng hướng.

Theo câu a) ta có: \(\left| {k\left( {t\overrightarrow u } \right)} \right| = \left| {\left( {kt} \right)\overrightarrow u } \right| = \left| {kt} \right|\left| {\overrightarrow u } \right|\)

\( \Rightarrow \)  Hai vecto \(k\left( {t\overrightarrow u } \right)\) và \(\left( {kt} \right)\overrightarrow u \) bằng nhau

30 tháng 3 2017

Giải bài 13 trang 28 sgk Hình học 10 | Để học tốt Toán 10