K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 12 2020

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

16 tháng 12 2020

giải thích cho em bài 1 cái đoạn TH1,TH2 với ạ

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0

Tên vietjack mà không làm được thì mang tiếng người ta quá

10 tháng 2 2021

EM CÓ BIẾT GÌ ĐÂU NÓ TỰ ĐẶT TÊN THẾ MÀ

5 tháng 4 2017

a)

Làm từng cái

(1)để có hai nghiệm: \(m^2+m+1\ne0\) ta có

\(m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall m\)đúng với \(\forall m\)

(2) \(\Delta>0\Rightarrow\left(2m-3\right)^2-4\left(m-5\right)\left(m^2+m+1\right)>0\)

{để đó tý giải quyết sau }

(3) tích hai nghiệm phải dương

\(\Rightarrow x_1x_2=\dfrac{c}{a}>0\Rightarrow m-5>0\Rightarrow m>5\)

(4) tổng hai nghiệm phải dương

\(\Rightarrow-\dfrac{b}{a}>0\Rightarrow2m-3< 0\Rightarrow m< \dfrac{3}{2}\)

từ (3) (4) => không có m thỏa mãn => kết luận vô nghiệm

 

 

5 tháng 4 2017

câu b)

có vẻ nhàn hơn

(1) \(\Delta'>0\Rightarrow9m^2-9m^2+2m-2=2m-2>0\Rightarrow m>1\)

(2)\(-\dfrac{b}{a}>0\Rightarrow m>0\)

(3) \(\dfrac{c}{a}>0\Rightarrow9m^2-2m+2>0\) đúng vơi mọi m

(1)(2)(3) nghiệm là: m>1

6 tháng 4 2017

\(\left\{{}\begin{matrix}2x-\left(m^2+m+1\right)y=-m^2-9\left(1\right)\\m^4x+\left(2m^2+1\right)y=1\left(2\right)\end{matrix}\right.\)

rút x từ (1) thế vào (2)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\left(3\right)\\m^4\left[\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\right]+\left(2m^2+1\right)y=1\left(4\right)\end{matrix}\right.\)

\(\left(4\right)\Leftrightarrow m^4\left(m^2+m+1\right)y-m^4\left(m^2+9\right)+2\left(2m^2+1\right)y=2\)

\(\Leftrightarrow\left[m^4\left(m^2+m+1\right)+4m^2+2\right]y=m^4\left(m^2+9\right)+2\)

\(\Leftrightarrow Ay=B\)

Taco

\(\left\{{}\begin{matrix}m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall m\in R\\4m^2+2>0\forall m\in R\\m^4\left(m^2+9\right)>0\forall m\in R\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A>0\forall m\in R\\B>0\forall m\in R\end{matrix}\right.\)

\(\Rightarrow y>0\forall m\in R\)

Kết luận không có m thủa mãn

Chọn đáp án đúng: Câu 1: Miền nghiệm của bất phương trình -3x+y+2≤0 không chứa điểm nào sau đây? A. D(3;1) B. A(1;2) C. C\(\left(1;\frac{1}{2}\right)\) D. B(2;1) Câu 2: Bdt (m+n)2≥4mn tương đương với bất đẳng thức nào sau đây? A. n(m-1)2-m(n-1)2≥0 B. (m-n)2 ≥2mn C. (m+n)2 +m-n≥0 D. m2+n2≥2mn Câu 3: Cho x,y là 2 số thực thay đổi sao cho x+y=2. Gọi m=x2+y2. Khi đó ta có: A. giá trị nhỏ nhất của m là 4 B....
Đọc tiếp

Chọn đáp án đúng:

Câu 1: Miền nghiệm của bất phương trình -3x+y+2≤0 không chứa điểm nào sau đây?

A. D(3;1)

B. A(1;2)

C. C\(\left(1;\frac{1}{2}\right)\)

D. B(2;1)

Câu 2: Bdt (m+n)2≥4mn tương đương với bất đẳng thức nào sau đây?

A. n(m-1)2-m(n-1)2≥0

B. (m-n)2 ≥2mn

C. (m+n)2 +m-n≥0

D. m2+n2≥2mn

Câu 3: Cho x,y là 2 số thực thay đổi sao cho x+y=2. Gọi m=x2+y2. Khi đó ta có:

A. giá trị nhỏ nhất của m là 4

B. giá trị lớn nhất của m là 4

C. giá trị lớn nhất của m là 2

D. giá trị nhỏ nhất của m là 2

Câu 4: Bpt 5x-1>\(\frac{2x}{5}+3\) có nghiệm là:

A. ∀x

B. x>\(\frac{20}{23}\)

C. x<2

D. x>-\(\frac{5}{2}\)

Câu 5: Cho nhị thức bậc nhất f(x)=23x-20. Khẳng định nào sau đây đúng?

A. f(x)>0, ∀x∈\(\left(-\infty;\frac{20}{23}\right)\)

B. f(x)>0, ∀x∈⛇

C. f(x)>0, ∀x∈\(\left(\frac{20}{23};+\infty\right)\)

D. f(x)>0, ∀x>-\(\frac{5}{2}\)

Câu 6: Điểm nào sau đây thuộc miền nghiệm của hệ bpt \(\left\{{}\begin{matrix}2x-5-1>0\\2x+y+5>0\\x+y+1< 0\end{matrix}\right.\) A. (0;-2) B. (0,0) C. (0;2) D.(1;0) Câu 7: Miền nghiệm của bất phương trình 3x+2(y+3)>4(x+1)-y+3 là phần mặt phẳng chứa điểm nào? A. (3;1) B. (0;0) C. (3;0) D. (1;1) Câu 8: Cho hệ bpt \(\left\{{}\begin{matrix}x>0\\x+\sqrt{3y}+1\le0\end{matrix}\right.\) có tập nghiệm là S. Khẳng định nào sau đây là khẳng định đúng? A. (-4;\(\sqrt{3}\))∈S B. (1;-1) ∈S C. (-1;\(\sqrt{5}\))∈S D. (1;-\(\sqrt{3}\))∈S Câu 9: Suy luận nào sau đây đúng? A. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow\frac{a}{b}>\frac{b}{d}\) B. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow a-c>b-d\) C. \(\left\{{}\begin{matrix}a>b>0\\c>d>0\end{matrix}\right.\Rightarrow ac>bd\) D. \(\left\{{}\begin{matrix}a>b\\c>d\end{matrix}\right.\Rightarrow ac>bd\) Câu 10: Cho hệ bất phương trình \(\left\{{}\begin{matrix}x>0\\x+\sqrt{3y}+1>0\end{matrix}\right.\)có tập nghiệm là S. Khẳng định nào sau đây đúng? A. \(\left(\sqrt{2};0\right)\notin S\) B. (-1;2) ∉ S C. \(\left(\sqrt{3};0\right)\)∈S D. \(\left(1;-\sqrt{3}\right)\in S\)

1
NV
5 tháng 5 2020

Câu 1: đáp án B, thay tọa độ A vào pt được \(1\le0\) (sai)

Câu 2: đáp án D

\(\left(m+n\right)^2\ge4mn\Leftrightarrow m^2+n^2+2mn\ge4mn\Leftrightarrow m^2+n^2\ge2mn\)

Câu 3: đáp án D

\(m=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{4}{2}=2\)

Câu 4:

\(\Leftrightarrow5x-\frac{2}{5}x>4\Leftrightarrow\frac{23}{5}x>4\Leftrightarrow x>\frac{20}{23}\)

Câu 5:

\(f\left(x\right)>0\Leftrightarrow23x-20>0\Leftrightarrow x>\frac{20}{23}\) đáp án C

Câu 6:

Bạn viết sai đề, nhìn BPT đầu tiên \(2x-5-1>0\) là thấy có vấn đề

Câu 7:

\(3x+2\left(y+3\right)>4\left(x+1\right)-y+3\)

\(\Leftrightarrow x-3y+1< 0\)

Thay tọa độ D vào ta được \(-1< 0\) đúng nên đáp án D đúng

Câu 8:

Thay tọa độ vào chỉ đáp án D thỏa mãn

Câu 9:

Đáp án C đúng

Câu 10:

Đáp án B đúng (do tọa độ x âm ko thỏa mãn BPT đầu tiên)

30 tháng 12 2022

Bài 3:

a: TH1: m=-2

=>-2(-2-1)x+4<0

=>6x+4<0

=>x<-4/6(loại)

TH2: m<>-2

\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)

=4m^2-8m+4-16m-32

=4m^2-24m-28

Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)

b: TH1: m=3

=>5x-4>0

=>x>4/5(loại)

TH2: m<>3

Δ=(m+2)^2-4*(-4)(m-3)

\(=m^2+4m+4+16m-48=m^2+20m-44\)

Để bất phương trình vô nghiệm thì

\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)