Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cosi: ab <= 1/4
Quy đồng P, ta đc:
P = (2ab+1)/(ab+2).
Ta cm P <= 2/3
<=> 3(2ab+1) <= 2(ab+2)
<=> ab<= 1/4 (đúng)
Vậy maxP = 2/3 khi a=b =1/2
Áp dụng BĐT AM-GM ta có:
\(B=2a+3b+\frac{6}{a}+\frac{10}{b}=a+b+a+2b+\frac{6}{a}+\frac{10}{b}\)
\(=4+a+\frac{4}{a}+2b+\frac{8}{b}+\frac{2}{a}+\frac{2}{b}\)
\(\ge4+2\sqrt{a.\frac{4}{a}}+2.2\sqrt{b.\frac{4}{b}}+2.\frac{4}{a+b}\)
\(=4+2.2+2.2.2+2.1\)
\(=4+4+8+2=18\)
Nên GTNN của B là 18 đạt được khi \(a=b=2\)
#)Trả lời :
\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{a+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)
Tách VT = A + B và xét :
\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3b}{1+a^2}=\)\(\sum\)\(\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(3a-\frac{3ab}{2}\right)\)
\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\)\(\sum\)\(\left(1-\frac{b^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(1-\frac{b}{2}\right)\)
\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\)\(\sum\)\(ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)
( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))
Dấu ''='' xảy ra khi a = b = c = 1
Tham khảo nhé ^^
\(P=\left(a+b+c\right)+\left(a+\frac{4}{a}\right)+\left(3b+\frac{12}{b}\right)+\left(5c+\frac{20}{c}\right)\)
Theo BĐT AM-GM và gt ta có: \(P\ge6+4+12+20=42\).
Đẳng thức xảy ra khi \(a=b=c=2\)
Vậy \(minP=42\)
Biết trước điểm rơi rồi thì quá EZ.
\(P=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)
\(=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)
\(\ge2\sqrt{\frac{3}{a}\cdot\frac{3a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{a+2b+3c}{4}\)
\(\ge13\)
Dấu "=" xảy ra tại a=2;b=3;c=4
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6
Các bạn giúp mk nhanh vs aaaaaasắp đến hạn nộp rồi
Bài làm:
Ta có: \(P=\frac{4}{a}+\frac{4}{b}+3a+3b-2\)
\(P=\left(\frac{4}{a}+a\right)+\left(\frac{4}{b}+b\right)+2\left(a+b\right)-2\)
Áp dụng bất đẳng thức Cauchy ta được:
\(P\ge2\sqrt{\frac{4}{a}.a}+2\sqrt{\frac{4}{b}.b}+2.4-2\)
\(=4+4+8-2=14\)
Dấu "=" xảy ra khi: \(a=b=2\)
Vậy Min(P) = 14 khi a=b=2