Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
f(1) + f(-2) = a + b + c + 4a - 2b + c = 5a - b + 2c = 0
\(\Rightarrow\)f(1) = -f(-2)
Do đó : f(1) . f(-2) = -[f(-2)]2 \(\le\)0
\(\left\{{}\begin{matrix}f\left(-2\right)=4a-2b+c\\f\left(3\right)=9a+3b+c\end{matrix}\right.\)
\(\left\{{}\begin{matrix}-b=13a+2c\\f\left(-2\right)=30a+5c\\f\left(3\right)=-30a-5c\end{matrix}\right.\) \(\Rightarrow f\left(-2\right).f\left(3\right)=-\left(30a+5c\right)^2\le0\Rightarrow dpcm\)
cộng f(-2)+f(3)=0(gt)
vậy hai số f(-2) và f(3) là hai số đối nhau hoặc bằng không. thế là ra rồi đấy
ta có : f(-2)=4a-2b+c ; f(3)=9a+3b+c
f(-2)+f(3)=13a+b+2c=0\(\Rightarrow\)f(-2) và f(3) là hai số đối nhau hoặc cùng bằng 0\(\Rightarrow\)f(-2).f(3)=<0
Lời giải:
Ta có:
$f(-1)=a-b+c$
$f(2)=4a+2b+c$
Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$
$\Rightarrow f(-1)=-f(2)$
$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)
Ta có : f(-1) = a. (-1)2 + b(-1) + c = a - b + c
f(2) = a.22 + b.2 +c = 4a + 2b + c
Nên: f(-1) + f(2) = ( a - b + c ) + ( 4a + 2b + c )= 5a + b + 2c = 0
=> f(-1) = -f(2)
Do đó : f(-1) . f(2) =-f(2) . f(2) = -[f(2)]2 \(\le\)0
Vậy....