K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 10 2020

Đặt \(\left(a;b;c\right)=\left(x;y;\frac{1}{z}\right)\Rightarrow ab^2+bc^2+ca^2=3\)

\(P=\frac{1}{a^4+b^4+c^4}\)

Ta có:

\(a^4+b^4+b^4+1\ge4ab^2\)

\(b^4+c^4+c^4+1\ge4bc^2\)

\(c^4+a^4+a^4+1\ge4ca^2\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=12\)

\(\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow P\le1\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 1:

\((x,y,z)=(\frac{2a^2}{bc}; \frac{2b^2}{ca}; \frac{2c^2}{ab})\) (\(a,b,c>0\) )

Khi đó:

\(\text{VT}=\frac{\frac{4a^4}{b^2c^2}}{\frac{4a^4}{b^2c^2}+\frac{4a^2}{bc}+1}+\frac{\frac{4b^4}{c^2a^2}}{\frac{4b^4}{c^2a^2}+\frac{4b^2}{ca}+4}+\frac{\frac{4c^4}{a^2b^2}}{\frac{4c^4}{a^2b^2}+\frac{4c^2}{ab}+4}\)

\(=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\)

\(\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+a^2bc+b^2ac+c^2ab+(a^2b^2+b^2c^2+c^2a^2)}\)

(Áp dụng BĐT Cauchy_Schwarz)

Theo BĐT Cauchy dễ thấy:

\(a^2b^2+b^2c^2+c^2a^2\geq a^2bc+b^2ca+c^2ab\)

\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)}=\frac{(a^2+b^2+c^2)^2}{(a^2+b^2+c^2)^2}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=2$

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Bài 2:

Đặt \((x,y,z)=\left(\frac{a}{b};\frac{b}{c}; \frac{c}{a}\right)\)

Ta có:

\(\text{VT}=\left(\frac{a}{b}+\frac{c}{b}-1\right)\left(\frac{b}{c}+\frac{a}{c}-1\right)\left(\frac{c}{a}+\frac{b}{a}-1\right)\)

\(=\frac{(a+c-b)(b+a-c)(c+b-a)}{abc}\)

Áp dụng BĐT Cauchy:

\((a+c-b)(b+a-c)\leq \left(\frac{a+c-b+b+a-c}{2}\right)^2=a^2\)

\((b+a-c)(c+b-a)\leq \left(\frac{b+a-c+c+b-a}{2}\right)^2=b^2\)

\((a+c-b)(c+b-a)\leq \left(\frac{a+c-b+c+b-a}{2}\right)^2=c^2\)

Nhân theo vế:

\(\Rightarrow [(a+c-b)(b+a-c)(c+b-a)]^2\leq (abc)^2\)

\(\Rightarrow (a+c-b)(b+a-c)(c+b-a)\leq abc\)

\(\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$

5 tháng 11 2017

Phân tích cái trên thành hằng đẳng thức bậc 2 là đc, tìm ra x;y;z rồi thay vào M

5 tháng 11 2017

làm rõ ra cho tớ được không? Không hiểu sao tớ phân tích không ra :((

10 tháng 9 2018

Sửa đề: \(Minf\left(x,y,z\right)=\frac{\left(x+y+z\right)^6}{xy^2z^3}\)

\(\frac{\left(x+y+z\right)^6}{xy^2z^3}=\frac{\left(x+\frac{y}{2}+\frac{y}{2}+\frac{z}{3}+\frac{z}{3}+\frac{z}{3}\right)^6}{xy^2z^3}\)

\(\ge\frac{\left(6\sqrt[6]{x.\frac{y^2}{4}.\frac{z^3}{27}}\right)^6}{xy^2z^3}=\frac{6^6}{4.27}=432\)

10 tháng 9 2018

alibaba nguyễn bn giải kĩ hơn 1 chút cho mk vs

27 tháng 8 2017

Cần mọi người giúp bài Bất đẳng thức - Diễn Đàn MathScope

2 tháng 3 2019

:v Cần t giúp honggg nè :">

3 tháng 3 2019

thanks nhé, nhưng đề bài đó t chép sai, nhưng chép lại thì làm đc rồi, nếu vs đề như vậy m làm đc thì cho t mở rộng tầm mắt ^.<