Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)
\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)
\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)
\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)
Dấu "=" <=> x=y=z=1
Áp dụng BĐT AM-GM cho 3 số không âm, ta có: \(0< \sqrt[3]{yz.1}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{3x}{y+z+1}\)
Làm tương tự với 2 hạng tử còn lại rồi cộng theo vế thì có:
\(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}\ge3\left(\frac{x}{y+z+1}+\frac{y}{z+x+1}+\frac{z}{x+y+1}\right)\)
\(=3\left(\frac{x^2}{xy+xz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{zx+yz+z}\right)\ge^{Schwartz}3.\frac{\left(x+y+z\right)^2}{x+y+z+2\left(xy+yz+zx\right)}\)
\(=3.\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x+y+z+2\left(xy+yz+zx\right)}\ge9.\frac{xy+yz+zx}{\sqrt{3\left(x^2+y^2+z^2\right)}+2\left(x^2+y^2+z^2\right)}\)
\(=9.\frac{xy+yz+zx}{3+2.3}=xy+yz+zx\) => ĐPCM.
Dấu "=" xảy ra khi x=y=z=1.
=2/(xy+yz+zx)+2/(x^2+y^2+z^2)+1/xy+yz+zx
>=2(4/(x+y+z)^2)+1/(1/3)>=8+3=11(hình như sai đề nhưng cách làm là đúng rồi)
=2/(xy+yz+zx)+2/(x^2+y^2+z^2)+1/xy+yz+zx
>=2(4/(x+y+z)^2)+1/(1/3)>=8+3=11(hình như sai đề nhưng cách làm là đúng rồi)
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
ĐK : x ; y ; z dương ...
Ta có : \(x^2-xy=y^2-yz=z^2-zx\)
\(\Leftrightarrow x\left(x-y\right)=y\left(y-z\right)=z\left(z-x\right)\Leftrightarrow x=y=z\)
Áp dụng BĐT cô si 3 số ta được :
\(\frac{x}{z}+\frac{y}{x}+\frac{z}{y}\ge3\sqrt[3]{\frac{x}{z}\frac{y}{x}\frac{z}{y}}=3\)
Dấu ''='' xảy ra <=> x = y = z
Vậy ta có đpcm
ta có:
\(F^2=\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\)
\(=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)=1+2.1=3\)
\(\Rightarrow F\ge\sqrt{3}\)
Vậy \(Min_F=\sqrt{3}\)khi \(x=y=z=\frac{\sqrt{3}}{3}\)
cho mình hỏi từ \(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge x^2+y^2+z^2\)tại sao lại ra được như thế này vậy ạ
\(6\le\sqrt{3\left(x^2+y^2+z^2\right)}+x^2+y^2+z^2\)
Đặt \(\sqrt{x^2+y^2+z^2}>0\) thì:
\(t^2+\sqrt{3}t-6\ge0\)\(\Leftrightarrow t\ge\sqrt{3}\left(\text{do t>0 nên loại th kia }\right)\Rightarrow x^2+y^2+z^2\ge3^{\left(đpcm\right)}\)
Đúng ko ta?
Áp dụng bất đẳng thức Cauchy :
\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)
Cộng theo vế ta được :
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1)
Mặt khác ta cũng có BĐT quen thuộc :
\(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2)
Lấy (1) cộng (2) ta được :
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z\right)+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge12\)
\(\Leftrightarrow x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)