K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

\(A=\frac{\left(xy+2016z\right)\left(yz+2016x\right)\left(zx+2016y\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\)

Thay \(x+y+z=2016\)

\(A=\frac{\left[xy+\left(x+y+z\right)z\right]\left[yz+\left(x+y+z\right)x\right]\left[zx+\left(x+y+z\right)y\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\)

\(A=\frac{\left[xy+xz+yz+z^2\right]\left[yz+xy+xz+x^2\right]\left[zx+xy+yz+y^2\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=\frac{\left[x\left(y+z\right)+z\left(y+z\right)\right]\left[y\left(z+x\right)+x\left(z+x\right)\right]\left[x\left(z+y\right)+y\left(z+y\right)\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=\frac{\left[\left(y+z\right)\left(x+z\right)\right]\left[\left(x+z\right)\left(x+y\right)\right]\left[\left(z+y\right)\left(x+y\right)\right]}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=\frac{\left(x+z\right)\left(x+z\right)\left(y+z\right)\left(y+z\right)\left(x+y\right)\left(x+y\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=\frac{\left(x+z\right)^2\left(y+z\right)^2\left(x+y\right)^2}{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)

\(A=1\)

8 tháng 1 2017

ko bít làm à

8 tháng 1 2017

k bik nên mới hỏi

11 tháng 1 2017

Ta có: \(\left(xy+2016z\right)\left(yz+2016z\right)\left(zx+2016y\right)\\ =\left(xy+\left(x+y+z\right)z\right)\left(yz+\left(x+y+z\right)x\right)\left(zx+\left(x+y+z\right)y\right)\\ =\left(xy+zx+zy+z^2\right)\left(yz+x^2+xy+xz\right)\left(zx+xỹ+y^2+yz\right)\\ =\left(y+z\right)\left(x+z\right)\left(x+z\right)\left(y+x\right)\left(z+y\right)\left(x+y\right)\\ =\left(y+z\right)^2\left(x+y\right)^2\left(z+x\right)^2\\ \Rightarrow\frac{\left(xy+2016z\right)\left(yz+2016z\right)\left(zx+2016y\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\\ =\frac{\left(y+z\right)^2\left(x+y\right)^2\left(z+x\right)^2}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\\ =1\)

13 tháng 12 2015

\(E=\frac{x}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{xyz.z}{zx+xyz.z+xyz}=\frac{1}{yz+y+1}+\frac{y}{yz+y+1}+\frac{yz}{1+yz+y}=\frac{1+y+yz}{1+y+yz}=1\)

13 tháng 12 2015

Xin lỗi mk chưa học tới bài này.Bạn vào câu hỏi tương tự thử có k.

6 tháng 8 2016

\(M=\frac{x^3+y^3+z^3-3xyz}{x^2+y^2+z^2-xy-yz-zx}\)

Đặt \(N=x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right).z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-zx-yz+z^2-3xy\right)\)


\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Vậy \(M=\frac{N}{x^2+y^2+z^2-xy-yz-zx}=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2+y^2+z^2-xy-yz-zx}=x+y+z=2016\)

(*) bn ghi sai đề 1 chỗ nhé:ở mẫu thức của M phải là  \(x^2+y^2+z^2-xy-yz-zx\) nhé!

16 tháng 9 2023

a) Để A có nghĩa, mẫu số của biểu thức phải khác 0. Vì vậy, ta cần giải phương trình: x^2y - xy^2 + y^2z - yz^2 + z^2x - zx^2 ≠ 0 b) Để tính giá trị của A khi x = -1/2, y = 5/2 và z = 8, ta thay các giá trị này vào biểu thức và tính toán: A = (-1/2)^3(5/2) - (-1/2)(5/2)^3 + (5/2)^3(8) - (5/2)(8)^3 + (8)^3(-1/2) - (8)(-1/2)^2 / (-1/2)^2(5/2) - (-1/2)(5/2)^2 + (5/2)^2(8) - (5/2)(8)^2 + (8)^2(-1/2) - (8)(-1/2)^2 Sau khi tính toán, ta sẽ có giá trị của A. Lưu ý: Để tính toán đúng, hãy chắc chắn rằng bạn đã sử dụng các giá trị x, y, z đúng và thực hiện các phép tính đúng theo thứ tự ưu tiên.

M+2019=2xy−yz−zx+2020M+2019=2xy−yz−zx+2020

=2xy−yz−zx+x2+y2+z2=2xy−yz−zx+x2+y2+z2

=(x+y−z2)2+3z24≥0=(x+y−z2)2+3z24≥0

⇒Mmin=0⇒Mmin=0 khi ⎧⎩⎨⎪⎪⎪⎪x+y−z2=03z24=0x2+y2+z2=2020{x+y−z2=03z24=0x2+y2+z2=2020

⇔⎧⎩⎨⎪⎪x+y=0z=0x2+y2=2020⇔{x+y=0z=0x2+y2=2020 ⇒⎧⎩⎨⎪⎪x=±1010−−−−√y=−xz=0

1 tháng 11 2020

mình không hiểu ạ