K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì x và y là hai đại lượng tỉ lệ thuận

nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)

a: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)

\(\Leftrightarrow x_1=\dfrac{y_1}{y_2}\cdot x_2=\left(-\dfrac{3}{4}\right):\dfrac{1}{7}\cdot2=\dfrac{-3}{4}\cdot7\cdot2=-\dfrac{3}{4}\cdot14=-\dfrac{42}{4}=-\dfrac{21}{2}\)

b: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)

nên \(\dfrac{x_1}{-4}=\dfrac{y_1}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x_1}{-4}=\dfrac{y_1}{3}=\dfrac{y_1-x_1}{3-\left(-4\right)}=\dfrac{2}{7}\)

Do đó: \(x_1=-\dfrac{8}{7};y_1=\dfrac{6}{7}\)

c: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)

nên \(\dfrac{x_1}{-6}=\dfrac{y_1}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x_1}{-6}=\dfrac{y_1}{3}=\dfrac{3x_1+2y_1}{3\cdot\left(-6\right)+2\cdot3}=\dfrac{20}{-12}=-\dfrac{5}{3}\)

Do đó: \(x_1=10;y_1=-5\)

1 tháng 6 2016

 a) x và y là hai đại lượng tỷ lệ thuận 
nên x1/y1 = x2/y2 
suy ra x1=x2.y1/y2 = 2.(-3/4):1/7 =-21/2 

b) x và y là hai đại lượng tỷ lệ thuận 
nên x1/y1 = x2/y2 
<=> x1/x2 = y1/y2 = (y1-x1)/(y2-x2) (theo t/c của dãy tỷ số bằng nhau) 
Thay số ta có: 
x1/(-4) = y1/3=-2/(3-(-4)) 
<=> x1/(-4) = y1/3=-2/7 
suy ra: 
x1 = (-4).(-2/7)=8/7 
y1 = 3.(-2/7)=-6/7 

k nha mk trả lời đầu đó!!!

12 tháng 3 2020

cảm ơn các bạn trước

Câu 1: 

\(C=2r\cdot3.14=r\cdot6.28\)

Vậy: C và r là hai đại lượng tỉ lệ thuận theo hệ số tỉ lệ k=6,28

Câu 2: 

Vì x và y là hai đại lượng tỉ lệ thuận

nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)

a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)

nên \(\dfrac{x_1}{-2}=\dfrac{4}{6}=\dfrac{2}{3}\)

hay \(x_1=\dfrac{-4}{3}\)

b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)

\(\Leftrightarrow\dfrac{x_1}{-3}=\dfrac{y_1}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x_1}{-3}=\dfrac{y_1}{4}=\dfrac{y_1-x_1}{4-\left(-3\right)}=\dfrac{-2}{7}\)

Do đó: \(x_1=\dfrac{6}{7};y_1=-\dfrac{8}{7}\)

23 tháng 6 2019

Giải: a) Ta có: x và y là 2 đại lượng tỉ lệ thuận với nhau theo hệ số k nên y = kx (k \(\ne\)0)

Ta có: \(\frac{x_1}{y_1}=\frac{x_2}{y_2}\) hay \(\frac{x_1}{-\frac{3}{4}}=\frac{2}{\frac{1}{7}}\) => \(x_1=14.\frac{-3}{4}\) => \(x_1=-\frac{21}{2}\)

b) Ta có: x và y là 2 đại tỉ lệ thuận với nhau theo hệ số k nên y = kx (k \(\ne\)0)

Ta có:  \(\frac{x_1}{y_1}=\frac{x_2}{y_2}\) hay \(\frac{x_1}{y_1}=\frac{-4}{3}\) => \(\frac{x_1}{-4}=\frac{y_1}{3}\) và \(y_1-x_1=-2\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

      \(\frac{x_1}{-4}=\frac{y_1}{3}=\frac{y_1-x_1}{3+4}=-\frac{2}{7}\)

=> \(\hept{\begin{cases}\frac{x_1}{-4}=-\frac{2}{7}\\\frac{y_1}{3}=-\frac{2}{7}\end{cases}}\) => \(\hept{\begin{cases}x_1=-\frac{2}{7}.\left(-4\right)=\frac{8}{7}\\y_3=-\frac{2}{7}.3=-\frac{6}{7}\end{cases}}\)

Vậy ...

24 tháng 4 2018