\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{y+z-3}{z}=\frac{1}{x+y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
11 tháng 8 2021

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)

3 tháng 3 2018

Theo đề bài để tồn tại phân số: \(\frac{1}{x+y+z}\) ta có: \(x+y+z\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)

Thay vào đề bài ta có: \(\frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)

Dễ dàng tìm được x;y;z rồi thay vào b thức

6 tháng 4 2018

?????? tớ không biết nhưng k cho mình nha

13 tháng 8 2020

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x + y + z khác 0)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\hept{\begin{cases}\frac{y+z+1}{x}=2\\\frac{x+z+2}{y}=2\\\frac{x+y-3}{z}=2\end{cases}}\) => \(\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{cases}}\) => \(\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}}\)=> \(\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=-\frac{5}{2}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

Khi đó: A = \(2016\cdot\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}-\left(\frac{5}{6}\right)^{2017}=1008\)

13 tháng 8 2020

Ta có \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

                                                                                                                 \(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khi đó \(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)

Lại có \(\frac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow x+y+z+1=3x\Rightarrow\frac{1}{2}+1=3x\Rightarrow3x=\frac{3}{2}\)

=> x = 1/2 

Lại có \(\frac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow x+y+z+2=3y\Rightarrow\frac{1}{2}+2=3y\Rightarrow3y=\frac{5}{2}\)

=> y = 5/6

Lại có x + y + z = 1/2

=> 1/2 + 5/6 + z = 1/2

=> 5/6 + z = 0

=> z = -5/6

Khi đó A = 2016X + y2017 + z2017

= 2016.1/2 + (5/6)2017 - (5/6)2017

= 1008

Vậy A = 1008

7 tháng 2 2019

Nhanh k cho nè

7 tháng 2 2019

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)

30 tháng 8 2021

áp dụng tc của dãy tỉ số = nhau : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}\Leftrightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}z-x=2x-2z\\y-x=2x-2y\\z-y=2y-z\end{cases}\Leftrightarrow\hept{\begin{cases}3x=3z\\3x=3y\\3y=3z\end{cases}}\Leftrightarrow x=y=z}\)

thay vào B ta đc : \(B=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=8\)

30 tháng 8 2021

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

=> \(\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

Khi x + y + z = 0 

=> x + y = -z ; y + z = -x ; z + x = -y

Khi đó \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}=\frac{-z.\left(-x\right).\left(-y\right)}{y.z.x}=-1\)

Khi x  + y + z \(\ne\)0

=> x = y = z 

Khi đó \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

+) TH1: Nếu x + y + t + z ≠ 0

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13xy+z+t=yx+z+t=zx+y+t=tx+y+z=x+y+z+ty+z+t+x+z+t+x+y+t+x+y+z=13

=> 3x = y + z + t => 4x = x + y + z + t (1)

3y = x + z + t 4y = x + y + z + t (2)

3z = x + y + t 4z = x + y + z + t (3)

3t = x + y + z 4t = x + y + z + t (4)

Từ (1)(2)(3)(4) => x = y = z = t

⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=1+1+1+1=4

+) TH2: Nếu x + y + z + t = 0

=> x + y = -(z + t)

y + z = -(x + t)

t + z = -(x + y)

t + x = -(y + z)

⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1⇒x+yz+t=y+zt+x=z+tx+y=t+xy+z=−1

⇒x+yz+t+y+zt+x+z+tx+y+t+xy+z=(−1)+(−1)+(−1)+(−1)=−4

Mk nhĩ bn chép sai đề. Phải là \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}\)chứ!!! Sao lại là + ???!!!!