K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2018

Do z > 0 nên từ xy 2 z 2 + x 2 z + y = 3z 2 ⇒ xy 2 +\(\frac{x^2}{z}+\frac{y}{z^2}=3\)

Áp dụng AM­GM ta có:

(x 2y 2 + y 2 ) + (x 2 +\(\frac{x^2}{z^2}\))+(\(\frac{y^2}{z^2}+\frac{1}{z^2}\)) ≥ 2(xy 2 +\(\frac{x^2}{z}+\frac{y}{z^2}\))=6

...............

30 tháng 8 2018

ai giúp mik vs huhu

30 tháng 1 2017

Thông cảm nha cậu!!!!!!!

Mình mới học lớp 6, kiến thức chưa tới lớp 8

tk mình m

mình tk lại Mình hứa

7 tháng 11 2018

\(A=\left(x^2-yz\right)\left(y^2-zx\right)\left(z^2-xy\right)=\sqrt{\left(x^2-yz\right)\left(y^2-zx\right)}.\sqrt{\left(y^2-zx\right)\left(z^2-xy\right)}.\sqrt{\left(z^2-xy\right)\left(x^2-yz\right)}\)Giả sử \(x^2\ge yz;y^2\ge zx;z^2\ge xy\)

Theo Cosi ta có : 

\(\sqrt{\left(x^2-yz\right)\left(y^2-zx\right)}\le\frac{x^2-yz+y^2-zx}{2}\)

\(\sqrt{\left(y^2-zx\right)\left(z^2-xy\right)}\le\frac{y^2-zx+z^2-xy}{2}\)

\(\sqrt{\left(z^2-xy\right)\left(x^2-yz\right)}\le\frac{z^2-xy+x^2-yz}{2}\)

Cộng theo vế ta được : 

\(A\le\frac{x^2-yz+y^2-zx+y^2-zx+z^2-xy+z^2-xy+x^2-yz}{2}=\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\)

\(=1-\left(xy+yz+zx\right)\le1-\left(x^2+y^2+z^2\right)=1-1=0\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\) hoặc \(x=y=z=\frac{-1}{3}\) ( thỏa mãn giả sử ) 

Chúc bạn học tốt ~ 

PS : ko chắc :v 

12 tháng 2 2020

Em vừa giải bên AoPS:

NYub9d9.png

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)