K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

Ta có :

 \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

Khi đó ta chứng minh được :

\(x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\)

Mà \(x+y+z=0\)

\(\Rightarrow\)\(x^3+y^3+z^3=3xyz\)

Từ đó ta suy ra :

\(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+y^3z^3+z^3x^3\right)}{x^3+y^3+z^3}\)

\(=\frac{\left(3xyz\right)^2-2.3.x^2y^2z^2}{3xyz}\)

\(=\frac{9x^2y^2z^2-6x^2y^2z^2}{3xyz}\)

\(=xyz\)( ĐPCM )

Hên xui thôi

7 tháng 4 2019

1/y+1/x+1/z=0

=>xy+yz+xz=0(tự cm)

(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2=0

x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+3xyz=3xyz

x^6+y^6+z^6=(x^2+y^2+z^2)(X^4+y^4+z^4+x^2y^2+y^2z^2+z^2z^2)+3(xyz)^2=3(xyz)^2

=> (x^6+y^6+z^6)/(x^3+y^3+z^3)=3(Xyz)^2/3xyz=xyz(dpcm)

7 tháng 4 2019

:D???? ể??

\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-y-z\\y=-z-x\\z=-x-y\end{cases}}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\)

\(\hept{\begin{cases}xy=\left(-y-z\right).y=-y^2-zy\\yz=\left(-x-z\right).z=-z^2-xz\\xz=\left(-y-x\right).x=-x^2-xy\end{cases}}\Rightarrow xy+yz+zx=-\left(x^2+y^2+z^2+xz+xy+zy\right)=0\)

\(\Leftrightarrow x=y=z=0??????\)

p/s: ko biết t lỗi hay đề lỗi ((: 

26 tháng 12 2020

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+xz=0\)

CM : \(x^3y^3+y^3z^3+x^3z^3=3x^2y^2z^2\)

CM: \(x+y+z=0\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Rightarrow\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+x^3z^3+y^3z^3\right)}{3xyz}=\frac{3x^2y^2z^2}{xyz}=xyz\)

26 tháng 3 2019

Có: \(x+y+z=0\)

CM được: \(x^3+y^3+z^3=3xyz\)

Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow xy+xz+yz=0\)

\(\Leftrightarrow\left(xy+xz+yz\right)^3=0\)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3\left(xy+yz\right)\left(xz+yz\right)\left(xz+xy\right)=0\)(từ CT: (a+b+c)^3=a^3+b^3+c^3+3(a+b)(a+c)(b+c)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3+3xyz\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)(Thế x+y=-z ; y+z=-x và x+z=-y)

\(\Leftrightarrow x^3y^3+x^3z^3+y^3z^3=3x^2y^2z^2\)

\(\Leftrightarrow2\left(x^3y^3+x^3z^3+y^3z^3\right)=6x^2y^2z^2\)(1)

Có: \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^6+y^6+z^6+2\left(x^3y^3+x^3z^3+y^3z^3\right)=9x^2y^2z^2\)(2)

Từ (1) và (2):

Có: \(x^6+y^6+z^6=3x^2y^2z^2\)

Cho nên: \(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{3x^2y^2z^2}{3xyz}=xyz\)

1 tháng 7 2020

bằng gì kệ màylởp 3 đó híhí

20 tháng 11 2017

Bạn tự chứng minh hằng đẳng thức

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

Mà x+y+z=0

\(\Rightarrow x^3+y^3+z^3-3xyz=0\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)

Tương tự bạn có \(x^6+y^6+z^6=3x^2y^2z^2\)

Thay vào là đc. Có chỗ nào chưa hiểu thì kb và k cho mk nha, mk sẽ chỉ rõ hơn

20 tháng 11 2017

cảm ơn nha

12 tháng 3 2019

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2\Rightarrow xy+yz+zx=0\left(1\right)\)

Đặt xy=a ; yz=b ; xz =c 

=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3}{\left(xyz\right)^3}\)

Xét \(\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=a^3+b^3+c^3\)

mà \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc+3abc\)

\(=\left(a+b+c\right)^3-3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)-3abc+3abc\)

\(=\left(a+b+c\right)^3-3abc\left(a+b+c\right)+3\left(a+b\right)c\left(a+b+c\right)+3abc\)

Mà ta có \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)

=> \(\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=3\left(xyz\right)^2\)

=> \(\frac{\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3}{\left(xyz\right)^3}=\frac{3\left(xyz\right)^2}{\left(xyz\right)^3}=\frac{3}{xyz}\left(dpcm\right)\)

Bạn rút gọn vài bước đi nhé :3 mk trình bày ko hay cho lắm :3 nhớ k giùm mk nha :3

24 tháng 1 2018

Cái bài này bạn làm đc chưa? Hướng dẫn mk ik. >.<

11 tháng 10 2018

Đề kêu chứng minh gì vậy bạn?

7 tháng 10 2020

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz-xyz=0\)

\(\Leftrightarrow\left(x^2y+xy^2\right)+\left(yz^2+z^2x\right)+\left(zx^2+2xyz+y^2z\right)=0\)

\(\Leftrightarrow xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy+z^2+yz+zx\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x = -y hoặc y = -z hoặc z = -x

Không mất tổng quát giả sử x = -y, khi đó:

\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=-\frac{1}{y^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{z^{2015}}\)

\(\frac{1}{x^{2015}+y^{2015}+z^{2015}}=\frac{1}{-y^{2015}+y^{2015}+z^{2015}}=\frac{1}{z^{2015}}\)

\(\Rightarrow\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)