K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

Ta có: 

\(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x.4y.6z=48xyz\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

Thế vào A ta được:

\(A=\frac{x^3+y^3+z^3}{\left(x+y+z\right)^2}=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=1\)  

19 tháng 3 2017

bằng 1 mk làm rùi

29 tháng 3 2017

Ta có x2 + 1 >=2x . Dấu = xảy ra khi x = 1

Tương tự ta cũng có : y2 +4 >=4y. dấu = xảy ra khi y = 2 ; z2 +9 >=6z, dấu = xảy ra khi y = 3

vì x, y, z > 0, nên nhân từng vế các bđt này ta đc : ( x2 +1)( y2 +4)( z2 +9) >= 48xyz

Dấu = xảy ra khi x =1, y =2, z = 3

Vậy \(P=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=\frac{36}{36}=1\)

4 tháng 3 2017

Ta có: \(\left(x-1\right)^2\ge0\) <=> \(x^2+1\ge2x\) (1)

\(\left(y-2\right)^2\ge0\) <=> \(y^2+4\ge4y\) (2)

\(\left(z-3\right)^2\ge0\) <=> \(z^2+9\ge6z\) (3)

Nhân vế theo vế các bđt (1), (2), (3) được:

\(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge48xyz\) mặt khác theo bài ra: \(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)=48xyz\) => Dấu "=" xảy ra <=>

\(\left\{\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\) <=> \(\left\{\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

Đến đây thì bạn tự túc! :)))

11 tháng 1 2021

X3 + Y3 + Z3 = 3XYZ

<=> X3 + Y3 + Z3 - 3XYZ = 0

<=> ( X3 + Y3 ) + Z3 - 3XYZ = 0

<=> ( X + Y )3 - 3XY( X + Y ) + Z3 - 3XYZ = 0

<=> [ ( X + Y )3 + Z3 ] - 3XY( X + Y + Z ) = 0

<=> ( X + Y + Z )[ ( X + Y )2 - ( X + Y ).Z + Z2 - 3XY ] = 0

<=> ( X + Y + Z )( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0

<=> \(\orbr{\begin{cases}X+Y+Z=0\\X^2+Y^2+Z^2-XY-YZ-XZ=0\end{cases}}\)

+) X + Y + Z = 0 => \(\hept{\begin{cases}X+Y=-Z\\Y+Z=-X\\X+Z=-Y\end{cases}}\)

KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(\frac{X+Y}{Y}\right)\left(\frac{Y+Z}{Z}\right)\left(\frac{X+Z}{X}\right)=\frac{-Z}{Y}\cdot\frac{-X}{Z}\cdot\frac{-Y}{X}=-1\)

+) X2 + Y2 + Z2 - XY - YZ - XZ = 0

<=> 2( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0

<=> 2X2 + 2Y2 + 2Z2 - 2XY - 2YZ - 2XZ = 0

<=> ( X2 - 2XY + Y2 ) + ( Y2 - 2YZ + Z2 ) + ( X2 - 2XZ + Z2 ) = 0

<=> ( X - Y )2 + ( Y - Z )2 + ( X - Z )2 = 0 (1)

DỄ DÀNG CHỨNG MINH (1) ≥ 0 ∀ X,Y,Z

DẤU "=" XẢY RA <=> X = Y = Z

KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(1+\frac{Y}{Y}\right)\left(1+\frac{Z}{Z}\right)\left(1+\frac{X}{X}\right)=2\cdot2\cdot2=8\)

11 tháng 1 2021

Khi x + y + z = 0

=> x + y = -z

=> x + z = - y

=> y + z = - x

Khi đó M = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

8 tháng 12 2019

\(x+y+z=3\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\Leftrightarrow xy+yz+zx=0\left(\text{vì:}x^2+y^2+z^2=9\right)\)

\(xy+yz+zx=0\Rightarrow xy=-yz-zx;yz=-xy-xz;xz=-xy-yz\)

\(P=\frac{-x\left(y+z\right)}{x^2}+\frac{-y\left(z+x\right)}{y^2}+\frac{-z\left(x+y\right)}{z}-4=\frac{y+z}{-x}+\frac{z+y}{-y}+\frac{x+y}{-z}-4\)

\(P=\frac{3}{x}+\frac{3}{y}+\frac{3}{z}-1=\frac{3yz+3xz+3xy}{xyz}-1=0-1=-1\)

8 tháng 12 2019

Mk k hiểu dòng cuối

22 tháng 5 2018

Nguyên việt hiếu tự đặng tự trả lời nice  :)) 

22 tháng 5 2018

ê hiếu  t có 1 cách nhưng mà bị ngược dấu :))  có cần t làm ko :))))