K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2017

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)

A=6

20 tháng 1 2017

\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác

=> x=y=z

=> A=6

30 tháng 1 2017

+ Nếu x + y + z = 0 => x + y = -z; y + z = -x; x + z = -y

A = (1 + y/x)(1 + z/y)(1 + x/z)

A = (x+y)/x . (y+z)/y . (x+z)/z

A = -z/x . (-x)/y . (-y)/z = -1

+ Nếu x + y + z khác 0

x-y-z/x = -x+y-z/y = -x-y+z/z

<=> 1 - (y+z)/x = 1 - (x+z)/y = 1 - (x+y)/z

<=> y+z/x = x+z/y = x+y/z

Áp dụng t/c của dãy tỉ số = nhau ta có:

y+z/x = x+z/y = x+y/z = 2(x+y+z)/x+y+z = 2

A = (x+y)/x . (y+z)/y . (x+z)/z = 8

\(\Rightarrow A=2.\)

1 tháng 9 2016

\(\frac{x-y-z}{x}=\frac{y-x-z}{y}=\frac{z-x-y}{z}=\frac{x-y-z+y-x-z+z-x-y}{x+y+z}=\frac{-x-y-z}{x+y+z}=-1\)

\(\rightarrow\begin{cases}x-y-z=-x\\y-x-z=-y\\z-x-y=-z\end{cases}\)

\(\leftrightarrow\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}\)

\(A=\frac{x+y}{z}.\frac{y+z}{x}.\frac{z+x}{y}=8\)

2 tháng 1 2017

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

3 tháng 1 2017

chỉ thả tai thui

18 tháng 10 2019

ADTC dãy tỉ số bằng nhau đc ko hay pk mấy cái cosi hay cot , tan , .... 

10 tháng 2 2019

đặt \(\frac{x-y}{z}=a;\frac{y-z}{x}=b;\frac{z-x}{y}=c\)

\(\Rightarrow\)\(\frac{z}{x-y}=\frac{1}{a};\frac{x}{y-z}=\frac{1}{b};\frac{y}{z-x}=\frac{1}{c}\)

Ta có : \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(A=1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

Ta có :  \(\frac{b+c}{a}=\left(b+c\right)\frac{1}{a}=\left(\frac{y-z}{x}+\frac{z-x}{y}\right)\frac{z}{x-y}=\frac{y^2-yz+xz-x^2}{xy}.\frac{z}{x-y}=\frac{\left(y-x\right)\left(x+y-z\right)}{xy}.\frac{z}{x-y}=\frac{\left(z-x-y\right)z}{xy}=\frac{2z^2}{xy}\)vì x + y + z = 0 \(\Rightarrow\)z = -x - y

Tương tự : \(\frac{a+c}{b}=\frac{2x^2}{yz}\)\(\frac{a+b}{c}=\frac{2y^2}{xz}\)

\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2z^2}{xy}+\frac{2x^2}{yz}+\frac{2y^2}{xz}=\frac{2\left(x^3+y^3+z^3\right)}{xyz}=\frac{2.3xyz}{xyz}=6\)( vì x + y + z = 0 \(\Rightarrow\)x3 + y3 + z3 = 3xyz )

Vậy A = 3 + 6 = 9

19 tháng 12 2016

Đặt: \(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}=M\)

Ta có: 

\(M\cdot\frac{z}{x-y}=1+\frac{z}{x-y}\cdot\left(\frac{y-z}{x}+\frac{z-x}{y}\right)=1+\frac{z}{x-y}\cdot\frac{y^2-yz+xz-x^2}{xy}\)

\(=1+\frac{z}{x-y}\cdot\frac{\left(x-y\right)\left(z-x-y\right)}{xy}=1+\frac{2z^2}{xyz}=1+\frac{2z^3}{xyz}\)            (1)

Tương tự ta cũng có:

\(M\cdot\frac{x}{y-z}=1+\frac{2x^3}{xyz}\)              (2)

\(M\cdot\frac{y}{z-x}=1+\frac{2y^3}{xyz}\)            (3)

Từ (1);(2);(3) suy ra

\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\left(x^3+y^3+z^3\right)}{xyz}\)

Mà \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

Nên:

\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\cdot3xyz}{xyz}=9\)

=>đpcm

16 tháng 9 2018

Bạn quy đồng rồi phân tích tử thành nhân tử rồi ra à.