Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(x+y+z+xy+yz+zx\le\frac{x^2+1}{2}+\frac{y^2+1}{2}+\frac{z^2+1}{2}+xy+yz+xz=\frac{x^2+y^2+z^2+2xy+2yz+2zx+3}{2}=\frac{\left(x+y+z\right)^2+3}{2}\)\(\Leftrightarrow6\le\frac{\left(x+y+z\right)^2+3}{2}\Leftrightarrow\left(x+y+z\right)^2+3\ge12\Leftrightarrow\left(x+y+z\right)^2\ge9\Leftrightarrow x+y+z\ge3\)
Áp dụng BĐT Bunhiacopxki ta có:
\(3A=\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3^2=9\)
\(\Leftrightarrow A\ge3\)
Dấu " = " xảy ra <=> \(x=y=z=1\)
Vậy \(A_{min}=3\Leftrightarrow x=y=z=1\)
sao lại có cả trên 2 vậy
nhân vế trái với 2 là tạo ra cả 3 hàng đẳng thức rồi mà chắc bạn nhầm đâu đó rồi
Ta có
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)
Đặt \(\hept{\begin{cases}xy=a\\yz=b\\zx=c\end{cases}\Rightarrow a+b+c=0}\)
Ta có: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3+c^3=3abc\)
Ta lại có:
\(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{x^2y^2z^2}\)
\(=\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)
x2 + y2 + z2 = xy + yz + zx
=>2.(x2+y2+z2)=2.(xy+yz+zx)
<=>2x2+2y2+2z2=2xy+2yz+2zx
<=>2x2+2y2+2z2-2xy-2yz-2zx=0
<=>x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0
<=>(x-y)2+(y-z)2+(z-x)2=0
<=>x-y=0 và y-x=0 và z-x=0
<=>x=y và y=x và z=x
Vậy x=y=z
xin chao viet nam
Áp dụng BĐT Cô - si, ta có:
\(x+y+z+xy+yz+xz\le\frac{x^2+1}{2}+\frac{y^2+1}{2}+\frac{z^2+1}{2}\)
\(+xy+yz+xz=\frac{x^2+y^2+z^2+2xy+2yz+2xz+3}{2}\)
\(=\frac{\left(x+y+z\right)^2+3}{2}\)
\(\Leftrightarrow6\le\frac{\left(x+y+z\right)^2+3}{2}\Leftrightarrow\left(x+y+z\right)^2+3\ge12\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge9\)
Vì x,y,z > 0 nên \(x+y+z\ge3\)
\(x^2+y^2+z^2=\left(x^2+1\right)+\left(y^2+1\right)+\left(z^2+1\right)-3\)
\(\ge2\left(x+y+z\right)-3\ge2.3-3=3\)
Vậy \(x^2+y^2+z^2\ge3\left(đpcm\right)\)