Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bất đẳng thức cô si cho 2 số dương x, y ta được:
\(x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow\left(\frac{x+y}{2}\right)^2\ge xy\)
\(\Leftrightarrow\left(\frac{2}{2}\right)^2\ge xy\Leftrightarrow1\ge xy\)
ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=4-2xy\le4-2\)
\(\Leftrightarrow x^2+y^2\le2\) (1)
áp dụng bất đẳng thức cô si với 2 số dương x2,y2 ta được:
\(x^2+y^2\ge2\sqrt{x^2y^2}\)
\(\Leftrightarrow\left(\frac{x^2+y^2}{2}\right)^2\ge x^2y^2\)
mà \(\left(\frac{x^2+y^2}{2}\right)^2\le\left(\frac{2}{2}\right)^2=1\)
nên: \(x^2y^2\le1\) (2)
nhân 1 và 2 vế theo vế ta được:
\(x^2y^2\left(x^2+y^2\right)\le2\)
dấu "='' xảy ra khi và chỉ khi x=y=1
Ta có a/(a+b+c)<a/(a+b)<a+c/a+b+c ( Cái này là vì a/a+b <1)
Tương tự vậy với mấy cái kia cx thế cộng theo vế là ra nha bạn
Đặt B\(=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{\left(y^2-x^2\right)}\)
\(B=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left[\left(x-y\right)\left(x+y\right)\right]^2}-\frac{x^2}{\left(x-y\right)\left(x+y\right)}\) (làm tắt đấy x^2/(y^2 - x^2) = - x^2 /(x^2 - y^2)
Thay x + y = 1 vào B ta có
\(B=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x-y\right)^2}-\frac{x^2}{x-y}\)
\(B=\frac{y^2-2x^2y-x^2\left(x-y\right)}{\left(x-y\right)^2}=\frac{y^2-x^2y-x^3}{\left(x-y\right)^2}\)
A = \(\frac{y-x}{xy}:B=\frac{y-x}{xy}\cdot\frac{\left(x-y\right)^2}{\left(y^2-x^2y-x^3\right)}=\frac{\left(x-y\right)^3}{-xy\left(y^2-x^2y-x^3\right)}\)
Sorry mình không giúp đc bạn
1.
Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)
\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)
\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)
\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)
\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)
Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)
Vậy Min P=6 khi a=673; b=672; c=671
Câu 1 thử cộng 3 vào P xem
Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)
1) \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow\)\(2x^2+2y^2\ge x^2+2xy+y^2\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
2) \(\frac{1}{xy}=\frac{1}{\left(\sqrt{xy}\right)^2}\ge\frac{1}{\left(\frac{x+y}{2}\right)^2}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)
bạn Diệu Linh ơi, bài này bảo chứng minh điều đó là đúng chứ không bảo điều đó là giả thiết nhé bạn, nhưng cũng cảm ơn bạn vì đã giúp mình =))
1. \(a< b\Leftrightarrow2a< 2b\Leftrightarrow2a+1< 2b+1\)
\(a< b\Leftrightarrow-3a>-3b\Leftrightarrow-3a>-3b-1\)
2.\(a>b>0\Leftrightarrow a.\frac{1}{ab}>b.\frac{1}{ab}\Leftrightarrow\frac{1}{b}>\frac{1}{a}\Leftrightarrow\frac{1}{a}< \frac{1}{b}\)
ngại nhất là bất đẳng thức mà.
\(x+y=2\Rightarrow0< xy\le1\)
\(P=\left(xy\right)^2\left(4-2xy\right)=a^2\left(4-2a\right)\)
\(P-2=a\left(4a-2a^2\right)-2=2\left(a-1\right)\left(-a^2-a+1\right)\)\(\le0\) vì a\(\le\)1
=> dpcm