K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

ngại nhất là bất đẳng thức mà.

4 tháng 6 2016

\(x+y=2\Rightarrow0< xy\le1\)

\(P=\left(xy\right)^2\left(4-2xy\right)=a^2\left(4-2a\right)\)

\(P-2=a\left(4a-2a^2\right)-2=2\left(a-1\right)\left(-a^2-a+1\right)\)\(\le0\)  vì  a\(\le\)1

=> dpcm

17 tháng 6 2016

áp dụng bất đẳng thức cô si cho 2 số dương x, y ta được:

\(x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow\left(\frac{x+y}{2}\right)^2\ge xy\)

\(\Leftrightarrow\left(\frac{2}{2}\right)^2\ge xy\Leftrightarrow1\ge xy\)

ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=4-2xy\le4-2\)

\(\Leftrightarrow x^2+y^2\le2\)  (1)

áp dụng bất đẳng thức cô si với 2 số dương x2,y2 ta được:

\(x^2+y^2\ge2\sqrt{x^2y^2}\)

\(\Leftrightarrow\left(\frac{x^2+y^2}{2}\right)^2\ge x^2y^2\)

mà \(\left(\frac{x^2+y^2}{2}\right)^2\le\left(\frac{2}{2}\right)^2=1\)

nên: \(x^2y^2\le1\)  (2)

nhân 1 và 2 vế theo vế ta được:

\(x^2y^2\left(x^2+y^2\right)\le2\)

dấu "='' xảy ra khi và chỉ khi x=y=1

 

16 tháng 4 2016

Ta có a/(a+b+c)<a/(a+b)<a+c/a+b+c ( Cái này là vì a/a+b <1)

Tương tự vậy với mấy cái kia cx thế cộng theo vế là ra nha bạn 

Có ai giải rõ hơn k z ???

19 tháng 6 2015

Đặt B\(=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{\left(y^2-x^2\right)}\)

      \(B=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left[\left(x-y\right)\left(x+y\right)\right]^2}-\frac{x^2}{\left(x-y\right)\left(x+y\right)}\)  (làm tắt đấy x^2/(y^2 - x^2) = - x^2 /(x^2 - y^2)

Thay x + y = 1 vào B ta có 

    \(B=\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x-y\right)^2}-\frac{x^2}{x-y}\)

  \(B=\frac{y^2-2x^2y-x^2\left(x-y\right)}{\left(x-y\right)^2}=\frac{y^2-x^2y-x^3}{\left(x-y\right)^2}\)

A = \(\frac{y-x}{xy}:B=\frac{y-x}{xy}\cdot\frac{\left(x-y\right)^2}{\left(y^2-x^2y-x^3\right)}=\frac{\left(x-y\right)^3}{-xy\left(y^2-x^2y-x^3\right)}\)

Sorry mình không giúp đc bạn

20 tháng 3 2020

1. 

Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)

\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)

\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)

\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)

Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)

Vậy Min P=6 khi a=673; b=672; c=671

13 tháng 1 2019

Câu 1 thử cộng 3 vào P xem 

Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)

8 tháng 8 2019

1) \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow\)\(2x^2+2y^2\ge x^2+2xy+y^2\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

2) \(\frac{1}{xy}=\frac{1}{\left(\sqrt{xy}\right)^2}\ge\frac{1}{\left(\frac{x+y}{2}\right)^2}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)

9 tháng 8 2019

bạn Diệu Linh ơi, bài này bảo chứng minh điều đó là đúng chứ không bảo điều đó là giả thiết nhé bạn, nhưng cũng cảm ơn bạn vì đã giúp mình =))

2 tháng 1 2017

b1:

x-y=5->x=y+5

->x-3y/5-2y=y+5-3y/5-2y=5-2y5-2y=1

->đpcm

16 tháng 1 2019

1. \(a< b\Leftrightarrow2a< 2b\Leftrightarrow2a+1< 2b+1\)

\(a< b\Leftrightarrow-3a>-3b\Leftrightarrow-3a>-3b-1\)

2.\(a>b>0\Leftrightarrow a.\frac{1}{ab}>b.\frac{1}{ab}\Leftrightarrow\frac{1}{b}>\frac{1}{a}\Leftrightarrow\frac{1}{a}< \frac{1}{b}\)