\(7x^2-13xy-2y^2=0\)

tính \(A=\frac{2x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 10 2020

\(7x^2-13xy-2y^2=0\)

\(\Leftrightarrow7x^2-14xy+xy-2y^2=0\)

\(\Leftrightarrow7x\left(x-2y\right)+y\left(x-2y\right)=0\)

\(\Leftrightarrow\left(7x+y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow x=2y\) (do x;y>0)

Do đó: \(A=\frac{2.2y-6y}{7.2y+4y}=\frac{-2y}{18y}=-\frac{1}{9}\)

6 tháng 1 2018

a.\(\frac{4x-1}{2x^2y}-\frac{7x-1}{3x^2y}\)              MTC=6x2y

\(=\frac{3\left(4x-1\right)}{6x^2y}-\frac{2\left(7x-1\right)}{6x^2y}\)

\(=\frac{12x-3-\left(14x-2\right)}{6x^2y}\)

\(=\frac{12x-3-14x+2}{6x^2y}\)

\(=\frac{-2x-1}{6x^2y}=\frac{2\left(-x-1\right)}{6x^2y}=-\frac{x-1}{3x^2y}\)

b.\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)                             MTC= 2x (x + 3)

\(=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)

\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{3x-\left(x-6\right)}{2x\left(x+3\right)}\)

\(=\frac{3x-x+6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)

c.\(\frac{2x}{x^2+2xy}+\frac{y}{xy-2y^2}+\frac{4}{x^2-4y^2}\)

\(=\frac{2x}{x\left(x+2y\right)}+\frac{y}{y\left(x-2y\right)}+\frac{4}{\left(x-2y\right)\left(x+2y\right)}\)MTC= xy (x+2y).(x-2y)

\(=\frac{2xy\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\frac{xy\left(x+2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\frac{4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\frac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\frac{3x^2y-2xy^2+4xy}{xy\left(x-2y\right)\left(x+2y\right)}=\frac{xy\left(3x-2y+4\right)}{xy\left(x-2y\right)\left(x+2y\right)}=\frac{3x-2y+4}{\left(x-2y\right)\left(x+2y\right)}\)

Chọn mk nha!

3 tháng 2 2021

Ta có x2 - 3xy + 2y2 = 0

<=> x2 - xy - 2xy + 2y2 = 0

<=> x(x - y) - 2y(x - y) = 0

<=> (x - y)(x - 2y) = 0

<=> \(\orbr{\begin{cases}x-y=0\\x-2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases}}}\)

*) Khi x = y

Vì x > y > 0 => x \(\ne y\)(loại)

* Khi x = 2y

=> x - y = 2y - y

=> y > 0 (Vì x - y > 0) (tm)

Với x = 2y ta có A = \(\frac{6x+16y}{5x-3y}=\frac{6.2y+16.y}{5.2y-3y}=\frac{28y}{7y}=4\)

3 tháng 2 2021

Ta có : x2  +2y2 -3xy=0

<=> x2 - 2xy + y2 + y2 -xy =0

<=> (x - y)2 + y(y - x)         =0

<=> (y - x)2 + y(y - x)         =0

<=> (y - x)(y - x + y)           =0

<=> y=x (vô lí ) hoặc x= 2y (thỏa mãn)

Thay x=2y vào A ta đc

A=\(\frac{12y+16y}{10y-3y}=\frac{28y}{7y}\)

A= 4

12 tháng 6 2018

\(4x^2-9xy-9y^2=0\)

\(\Leftrightarrow\left(x-3y\right)\left(4x+3y\right)=0\)

làm nốt

29 tháng 6 2017

8) \(y^2-y-30=y^2+5y-6y-30=y\left(y+5\right)-6\left(y+5\right)=\left(y-6\right)\left(y+5\right)\)

9) \(y^2-8y+15=y^2-3y-5y+15=y\left(y-3\right)-5\left(y-3\right)=\left(y-5\right)\left(y-3\right)\)

10) \(y^2+y-6=y^2-2y+3y-6=y\left(y-2\right)+3\left(y-2\right)=\left(y+3\right)\left(y-2\right)\)

11) \(y^2-y-12=y^2+3y-4y-12=y\left(y+3\right)-4\left(y+3\right)=\left(y-4\right)\left(y+3\right)\)

12) \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-3\right)\left(x-2\right)\)

13) \(u^2+u-42=u^2+7u-6u-42=u\left(u+7\right)-6\left(u+7\right)=\left(u-6\right)\left(u+7\right)\)

29 tháng 6 2017

14) \(2x^2+x-6=2x^2+4x-3x-6=2x\left(x+2\right)-3\left(x+2\right)=\left(2x-3\right)\left(x+2\right)\)

15) \(7x^2+50x+7=7x^2+49x+x+7=7x\left(x+7\right)+\left(x+7\right)=\left(7x+1\right)\left(x+7\right)\)

16) \(12x^2+7x-12=12x^2+16x-9x-12=4x\left(3x+4\right)-3\left(3x+4\right)=\left(4x-3\right)\left(3x+4\right)\)

17) \(15x^2+7x-2=15x^2-3x+10x-2=3x\left(5x-1\right)+2\left(5x-1\right)=\left(3x+2\right)\left(5x-1\right)\)

18) \(2x^2-y^2+xy=2x^2+2xy-xy-y^2=2x\left(x+y\right)-y\left(x+y\right)=\left(2x-y\right)\left(x+y\right)\)

19) \(x^2-3xy+2y^2=x^2-xy-2xy+2y^2=x\left(x-y\right)-2y\left(x-y\right)=\left(x-2y\right)\left(x-y\right)\)

8 tháng 1 2017

Có vẻ đề  đúng

\(P=\frac{3x^2y-1}{4xy}\)

\(\left(x^2+y^2+1^2-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)

\(\left(x+y-1\right)^2+\left(y+2\right)^2=0\)

\(\hept{\begin{cases}x+y-1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}\Rightarrow}P=\frac{3.9.\left(-2\right)-1}{4.3.\left(-2\right)}=\frac{55}{24}}\)

8 tháng 1 2017

Cách giải đúng rồi nhưng sai hằng đảng thức nha bạn 
\(x^2+y^2+1-2xy-2x+2y=\left(y-x+1\right)^2\)

rồi sửa x= -1 là được

4 tháng 9 2019

đề bài bạn sai