Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có vẻ đề đúng
\(P=\frac{3x^2y-1}{4xy}\)
\(\left(x^2+y^2+1^2-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)
\(\left(x+y-1\right)^2+\left(y+2\right)^2=0\)
\(\hept{\begin{cases}x+y-1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}\Rightarrow}P=\frac{3.9.\left(-2\right)-1}{4.3.\left(-2\right)}=\frac{55}{24}}\)
Cách giải đúng rồi nhưng sai hằng đảng thức nha bạn
\(x^2+y^2+1-2xy-2x+2y=\left(y-x+1\right)^2\)
rồi sửa x= -1 là được
\(gt\Leftrightarrow\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow x=-1;y=-2\)
Done !!
Cho các số x khác 2y thỏa mãn x2- 2xy - 2y2 - 3x +6y=0
Tính giá trị biểu thức A= x2+ 2xy _y2 - 2x- 2y
trôi hết đề : Câu 7
\(\left(3-\sqrt{2}\right)\)
câu 8:
\(P=\frac{1+\frac{4}{x-2}}{\frac{x^2-4}{2}}\) để tồn tại P \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)(*)
Với đk (*)=>\(P=\frac{\left(x+2\right)}{\left(x-2\right)}.\frac{2}{\left(x-2\right)\left(x+2\right)}=\frac{2}{\left(x-2\right)^2}\)
Từ \(x^2-2xy+2y^2-2x+6y+5=0\)
\(\Rightarrow\left(x^2-2xy-2x+y^2+2y+1\right)+\left(y^2+4y+4\right)=0\)
\(\Rightarrow\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}\left(x-y-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Thay vào ta có: \(\frac{3x^2y-1}{4xy}=\frac{3\cdot\left(-1\right)^2\cdot\left(-2\right)-1}{4\cdot\left(-1\right)\cdot\left(-2\right)}=-\frac{7}{8}\)
đề bài bạn sai