Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(y(y+x)\ne0 \) nên \(y\ne0;y\ne-x\)
Đặt \(t=\dfrac{x}{y},t\ne-1\)
Ta có: \(x^2-xy=2y^2 \Rightarrow(\dfrac{x}{y})^2-\dfrac{x}{y}=2\)
\(\Rightarrow t^2-t-2=0 \Leftrightarrow t=2 \ \ vì \ \ t\ne-1\)
\(\Rightarrow A=\dfrac{1007\dfrac{x}{y}-1}{\dfrac{x}{y}+2012}=\dfrac{2013}{2014}\)
cách khác
\(\left\{{}\begin{matrix}x^2-xy=2y^2\left(1\right)\\y\left(x+y\right)\ne0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(x^2-y^2\right)-\left(xy+y^2\right)=\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=\left(x+y\right)\left(x-2y\right)=0\)
Từ (2) =>\(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)
\(A=\dfrac{1007x-y}{x+2012y}=\dfrac{1007.2y-y}{2y+2012y}=\dfrac{\left(1007.2-1\right)y}{\left(2+2013\right)y}=\dfrac{2013y}{2014y}\)
Từ (2)=> \(y\ne0\) \(\Rightarrow A=\dfrac{2013}{2014}\)
x2-2y2=xy
<=> (x-y)(x+y)=y(x+y)
Because y different from 0
=> y=x-y
<=> x=2y
=> Replace x by 2y
We have : the value of the A is 1/3
:v Mình đùa chút ^^ Đừng giận nha
mình đã làm được rồi , mọi người không cần đăng trả lợi nữa đâu ạ , xin cảm ơn !!!
1/
\(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x=2y\) (do \(x+y\ne0\))
\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
2/
\(x^4-30x^2+31x-30=0\)
\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)
\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x-30\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-30=0\\x^2-x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)\left(x+6\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)
\(x+y=1\Rightarrow\left\{{}\begin{matrix}y-1=-x\\x-1=-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(y-1\right)^2=x^2\\\left(x-1\right)^2=y^2\end{matrix}\right.\)
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{-1}{x^2+3y}+\frac{1}{y^2+3x}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)
\(=\frac{-y^2-3x+x^2+3y}{\left(xy\right)^2+3x^3+3y^3+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{\left(x-y\right)\left(x+y\right)-3x+3y}{\left(xy\right)^2+3\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)
\(=\frac{-2\left(x-y\right)}{\left(xy\right)^2+3}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=0\)
\(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\Rightarrow x^2-y^2-y^2-xy=0\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)-y\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x-2y=0\)\(\left(x+y\ne0\right)\)
\(\Rightarrow x=2y\)
Thay vào A tính đc giá trị của A
Bài 3:
a) Ta có: \(x^2+3x+3\)
\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)
\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\) là \(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)
b) Ta có: \(Q=x^2+2y^2+2xy-2y\)
\(=x^2+2xy+y^2+y^2-2y+1-1\)
\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)
Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)
\(\left(y-1\right)^2\ge0\forall y\)
Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1
Cho hai số dương x,y thỏa mãn: 2x2+xy-y2=0. Tính giá trị biểu thức:
A = \(\frac{x^2y+xy^2}{x^3+y^3}\)
x^2-2xy=2y^2
x^2-y^2-(xy+y^2)=0
(x+y)(x-2y)=0
vì y(x+y) khác 0 nên x+y khác 0
x-2y=0
x=2y
thay vào A ta tìm được A=\(\frac{5}{3}\)
đề sai
k kết quả
đúng mà