\(\frac{x-y}{x+y}\) biết x2 - 2y2 =...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 4 2019

1/

\(x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\)

\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\Rightarrow x=2y\) (do \(x+y\ne0\))

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

2/

\(x^4-30x^2+31x-30=0\)

\(\Leftrightarrow x^4+x-30x^2+30x-30=0\)

\(\Leftrightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2+x-30\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-30=0\\x^2-x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x-5\right)\left(x+6\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)

NV
4 tháng 4 2019

\(x+y=1\Rightarrow\left\{{}\begin{matrix}y-1=-x\\x-1=-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(y-1\right)^2=x^2\\\left(x-1\right)^2=y^2\end{matrix}\right.\)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{-1}{x^2+3y}+\frac{1}{y^2+3x}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-y^2-3x+x^2+3y}{\left(xy\right)^2+3x^3+3y^3+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=\frac{\left(x-y\right)\left(x+y\right)-3x+3y}{\left(xy\right)^2+3\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)+9xy}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}\)

\(=\frac{-2\left(x-y\right)}{\left(xy\right)^2+3}+\frac{2\left(x-y\right)}{\left(xy\right)^2+3}=0\)

29 tháng 1 2017

P.An hở

19 tháng 9 2019

Bài 1a/

\(\frac{1}{1+x+xy}=\frac{xyz}{xyz+x+xy}=\frac{yz}{1+y+yz}\)

\(\frac{1}{1+z+xz}=\frac{y}{y+yz+xyz}=\frac{y}{1+y+yz}\)

Vậy \(M=\frac{1}{1+y+yz}+\frac{y}{1+y+yz}+\frac{yz}{1+y+yz}=1\)

Chiều về làm tiếp

19 tháng 9 2019

Bài 1b:Lời giải này chủ yếu nhờ dự đoán trước Min là 2011/2012 đạt được khi x=2012

Ta có \(P=\frac{2012x^2-2.2012x+2012^2}{2012x^2}=\frac{\left(x-2012\right)^2+2011x^2}{2012x^2}\ge\frac{2011x^2}{2012x^2}=\frac{2011}{2012}\)

Bài 2: Dùng phân tích thành bình phương

\(10x^2+y^2+4z^2+6x-4y-4xz+5=\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)\)

\(=\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}}\)

Bài 3:

a/\(pt\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\Leftrightarrow x=-6,x=5\)

b/ta phân tích vế trái thành:\(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)

Bài 3:

a) Ta có: \(x^2+3x+3\)

\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\)\(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)

b) Ta có: \(Q=x^2+2y^2+2xy-2y\)

\(=x^2+2xy+y^2+y^2-2y+1-1\)

\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)

Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)

\(\left(y-1\right)^2\ge0\forall y\)

Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1

21 tháng 4 2020

Cảm ơn ạ =)

27 tháng 12 2015

mình chẳng hiểu  gì cả

27 tháng 12 2015

Bài 3:

Ta có:

\(81^8-1=\left(9^2\right)^8-1=\left[\left(3^2\right)^2\right]^8-1=3^{32}-1\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

Do đó: 

\(A=3^4-1=80\)

16 tháng 4 2019

a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM) 

*NOTE: chứng minh đc vì (x-y)^2  >= 0 ;  x^2  +xy +y^2 > 0

16 tháng 4 2019

mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé