Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)
Vậy....
\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)
\(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)
\(=30.\left(1+5^2+...+5^6\right)⋮30\)
Bài 1 bạn kia giải rồi
2. Gọi d = ƯCLN(2n+5;3n+7) (\(d\inℕ^∗\) )
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> (6n+15)-(6n+14) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* nên d = 1
=> ƯCLN(2n+5;3n+7) = 1
Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau
3. Nếu x+2y chia hết cho 5
=> 3.(x+2y) chia hết cho 5
=> 3x+6y chia hết cho 5
Mà 10y chia hết cho 5
=> (3x+6y)-10y chia hết cho 5
=> 3x - 4y chia hết cho 5
=> ĐPCM
x mũ 2 + y mũ 2 chia hết cho 3 => x mũ 2, y mũ 2 là số lẻ và là bội của 3. Mà số lẻ chia hết cho 3 + với số lẻ chia hết cho 3 thì luôn luôn cũng chia hết cho 3 => x,y đểu chia hết cho 3.
Bạn có thể tham khảo ở đây :
Câu hỏi của Ngu Người - Toán lớp 9 - Học toán với OnlineMath
Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.
Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.
1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)
- Ta thấy y=0; 1 không phải là nghiệm của bài toán.
- Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.
- Với y>=3 thì:
- Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)
\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)
- Thay vào (1) ta có: \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)
\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)
\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)
\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)
\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)
Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.
- Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\)
Lời giải:
* Chứng minh \(x\vdots 3, y\vdots 3\Rightarrow x^2+y^2\vdots 3(*)\)
Thật vậy \(x\vdots 3; y\vdots 3\Rightarrow x^2\vdots 3; y^2\vdots 3\Rightarrow x^2+y^2\vdots 3\)
* Chứng minh \(x^2+y^2\vdots 3\Rightarrow x\vdots 3; y\vdots 3(**)\)
Tính chất: Số chính phương $x^2$ khi chia cho $3$ dư $0$ hoặc $1$ (để chứng minh điều này, bạn có thể đặt $x=3k,3k+1,3k+2$ và khai triển ta có ngay đpcm)
Áp dụng tính chất trên:
+) Nếu \(x^2\) chia hết cho $3$, $y^2$ chia $3$ dư $1$ \(\rightarrow x^2+y^2\) chia 3 dư 1 (trái giả thiết)
+) Nếu $x^2$ chia 3 dư 1, $y^2$ chia hết cho $3$, thì $x^2+y^2$ chia 3 dư $1$ (trái giả thiết)
+) Nếu $x^2$ chia 3 dư 1, $y^2$ chia 3 dư 1, thì $x^2+y^2$ chia 3 dư $2$ (trái giả thiết)
Do đó $x^2,y^2$ phải cùng chia hết cho $3$. Mà $3$ là số nguyên tố nên \(\Rightarrow x\vdots 3; y\vdots 3\) (đpcm)
Từ \((*) (**): x^2+y^2\vdots 3\Leftrightarrow x\vdots 3; y\vdots 3\)
Ta có đpcm.
Cảm ơn bạn nhiều nha