Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(x+y=2\Rightarrow y=2-x\)
\(\Rightarrow A=x^2+2\left(2-x\right)^2+x-2\left(2-x\right)+1\)
\(A=x^2+2x^2-8x+8+x-4+2x+1\)
\(A=3x^2-5x+5\)
\(A=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{35}{12}\)
\(A=3\left(x-\frac{5}{6}\right)^2+\frac{35}{12}\ge\frac{35}{12}\)
\(\Rightarrow A_{min}=\frac{35}{12}\) khi \(x=\frac{5}{6}\) ; \(y=\frac{7}{6}\)
Câu 2:
\(x+2y=1\Rightarrow x=1-2y\)
\(\Rightarrow B=\left(1-2y\right)^2-5y^2+3\left(1-2y\right)-y-2\)
\(B=4y^2-4y+1-5y^2+3-6y-y-2\)
\(B=-y^2-11y+2\)
\(B=-\left(y^2+11y+\frac{121}{4}\right)+\frac{129}{4}\)
\(B=-\left(y+\frac{11}{2}\right)^2+\frac{129}{4}\le\frac{129}{4}\)
\(\Rightarrow B_{max}=\frac{129}{4}\) khi \(\left\{{}\begin{matrix}y=-\frac{11}{2}\\x=12\end{matrix}\right.\)
Câu 3:
Ta có:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\Rightarrow2\left|xy\right|\le4\Rightarrow\left|xy\right|\le2\Rightarrow x^2y^2\le4\)
\(D=\left(x^2\right)^3+\left(y^2\right)^3+x^4+y^4\)
\(D=\left(x^2+y^2\right)\left[\left(x^2+y^2\right)^2-3x^2y^2\right]+\left(x^2+y^2\right)^2-2x^2y^2\)
\(D=4\left(16-3x^2y^2\right)+16-2x^2y^2\)
\(D=80-14x^2y^2\ge80-14.4=24\)
\(\Rightarrow D_{min}=24\) khi \(\left\{{}\begin{matrix}x^2=2\\y^2=2\end{matrix}\right.\)
Áp dụng BĐT Cô-si ta có \(x^2+y^2\ge2xy\)
=> \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Mà \(x^2+y^2=1\) nên \(2\ge\left(x+y\right)^2\)
=> \(-\sqrt{2}\le x+y\le\sqrt{2}\)
Do đó GTLN của x+y=\(\sqrt{2}\) <=> \(x=y=\frac{1}{\sqrt{2}}\)
GTNN của x+y=\(-\sqrt{2}\) <=> \(x=y=\frac{1}{-\sqrt{2}}\)
Lời giải:
Áp dụng BĐT AM-GM:
$x^6+\frac{1}{8}+\frac{1}{8}\geq 3\sqrt[3]{\frac{x^6}{64}}=\frac{3}{4}x^2$
$y^6+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}y^2$
Cộng 2 BĐT trên và thu gọn theo vế thì:
$A+\frac{1}{2}\geq \frac{3}{4}(x^2+y^2)$
$\Leftrightarrow A+\frac{1}{2}\geq \frac{3}{4}$
$\Leftrightarrow A\geq \frac{1}{4}$
--------------------
Lại có:
$x^2+y^2=1\Rightarrow x^2\leq 1; y^2\leq 1\Rightarrow x^4\leq 1; y^4\leq 1$
Khi đó:
$x^6\leq x^2; y^6\leq y^2$
$\Rightarrow x^6+y^6\leq x^2+y^2$
$\Rightarrow A\leq 1$
Vậy $A_{\min}=\frac{1}{4}; A_{\max}=1$