K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 7 2024

Lời giải:
Áp dụng BĐT AM-GM:

$x^6+\frac{1}{8}+\frac{1}{8}\geq 3\sqrt[3]{\frac{x^6}{64}}=\frac{3}{4}x^2$

$y^6+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}y^2$

Cộng 2 BĐT trên và thu gọn theo vế thì:

$A+\frac{1}{2}\geq \frac{3}{4}(x^2+y^2)$

$\Leftrightarrow A+\frac{1}{2}\geq \frac{3}{4}$

$\Leftrightarrow A\geq \frac{1}{4}$

--------------------

Lại có:

$x^2+y^2=1\Rightarrow x^2\leq 1; y^2\leq 1\Rightarrow x^4\leq 1; y^4\leq 1$

Khi đó:

$x^6\leq x^2; y^6\leq y^2$

$\Rightarrow x^6+y^6\leq x^2+y^2$

$\Rightarrow A\leq 1$
Vậy $A_{\min}=\frac{1}{4}; A_{\max}=1$

21 tháng 5 2019

ai giải = cách tam thức bậc 2 càng tốt nha mình k mạnh cho

NV
15 tháng 5 2019

Câu 1:

\(x+y=2\Rightarrow y=2-x\)

\(\Rightarrow A=x^2+2\left(2-x\right)^2+x-2\left(2-x\right)+1\)

\(A=x^2+2x^2-8x+8+x-4+2x+1\)

\(A=3x^2-5x+5\)

\(A=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{35}{12}\)

\(A=3\left(x-\frac{5}{6}\right)^2+\frac{35}{12}\ge\frac{35}{12}\)

\(\Rightarrow A_{min}=\frac{35}{12}\) khi \(x=\frac{5}{6}\) ; \(y=\frac{7}{6}\)

Câu 2:

\(x+2y=1\Rightarrow x=1-2y\)

\(\Rightarrow B=\left(1-2y\right)^2-5y^2+3\left(1-2y\right)-y-2\)

\(B=4y^2-4y+1-5y^2+3-6y-y-2\)

\(B=-y^2-11y+2\)

\(B=-\left(y^2+11y+\frac{121}{4}\right)+\frac{129}{4}\)

\(B=-\left(y+\frac{11}{2}\right)^2+\frac{129}{4}\le\frac{129}{4}\)

\(\Rightarrow B_{max}=\frac{129}{4}\) khi \(\left\{{}\begin{matrix}y=-\frac{11}{2}\\x=12\end{matrix}\right.\)

NV
15 tháng 5 2019

Câu 3:

Ta có:

\(x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\Rightarrow2\left|xy\right|\le4\Rightarrow\left|xy\right|\le2\Rightarrow x^2y^2\le4\)

\(D=\left(x^2\right)^3+\left(y^2\right)^3+x^4+y^4\)

\(D=\left(x^2+y^2\right)\left[\left(x^2+y^2\right)^2-3x^2y^2\right]+\left(x^2+y^2\right)^2-2x^2y^2\)

\(D=4\left(16-3x^2y^2\right)+16-2x^2y^2\)

\(D=80-14x^2y^2\ge80-14.4=24\)

\(\Rightarrow D_{min}=24\) khi \(\left\{{}\begin{matrix}x^2=2\\y^2=2\end{matrix}\right.\)

Áp dụng BĐT Cô-si ta có \(x^2+y^2\ge2xy\) 

=> \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) 

Mà \(x^2+y^2=1\) nên \(2\ge\left(x+y\right)^2\) 

=> \(-\sqrt{2}\le x+y\le\sqrt{2}\) 

Do đó GTLN của x+y=\(\sqrt{2}\) <=> \(x=y=\frac{1}{\sqrt{2}}\) 

GTNN của x+y=\(-\sqrt{2}\) <=> \(x=y=\frac{1}{-\sqrt{2}}\)