Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si ta có \(x^2+y^2\ge2xy\)
=> \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Mà \(x^2+y^2=1\) nên \(2\ge\left(x+y\right)^2\)
=> \(-\sqrt{2}\le x+y\le\sqrt{2}\)
Do đó GTLN của x+y=\(\sqrt{2}\) <=> \(x=y=\frac{1}{\sqrt{2}}\)
GTNN của x+y=\(-\sqrt{2}\) <=> \(x=y=\frac{1}{-\sqrt{2}}\)
Lời giải:
Áp dụng BĐT AM-GM:
$x^6+\frac{1}{8}+\frac{1}{8}\geq 3\sqrt[3]{\frac{x^6}{64}}=\frac{3}{4}x^2$
$y^6+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}y^2$
Cộng 2 BĐT trên và thu gọn theo vế thì:
$A+\frac{1}{2}\geq \frac{3}{4}(x^2+y^2)$
$\Leftrightarrow A+\frac{1}{2}\geq \frac{3}{4}$
$\Leftrightarrow A\geq \frac{1}{4}$
--------------------
Lại có:
$x^2+y^2=1\Rightarrow x^2\leq 1; y^2\leq 1\Rightarrow x^4\leq 1; y^4\leq 1$
Khi đó:
$x^6\leq x^2; y^6\leq y^2$
$\Rightarrow x^6+y^6\leq x^2+y^2$
$\Rightarrow A\leq 1$
Vậy $A_{\min}=\frac{1}{4}; A_{\max}=1$
\(M=\sqrt{3}xy+y^2=\frac{1}{2}\left(x^2+2\sqrt{3}xy+3y^2\right)-\frac{1}{2}x^2-\frac{1}{2}y^2\)
\(=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}\).
Nên GTNN của M là \(-\frac{1}{2}\) đạt được khi \(x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}\)
+,Với \(y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}\)
+,Với \(y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}\)
Ta lại có:\(M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}\)
Nên GTLN của M là \(\frac{3}{2}\) đạt được khi \(\sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}\)
+,Với \(x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}\)
+,Với \(x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}\)
M=3xy+y2=21(x2+23xy+3y2)−21x2−21y2
=\frac{1}{2}\left(x+\sqrt{3}y\right)^2-\frac{1}{2}\ge-\frac{1}{2}=21(x+3y)2−21≥−21.
Nên GTNN của M là -\frac{1}{2}−21 đạt được khi x=-\sqrt{3}y\Rightarrow x^2=3y^2\Rightarrow4y^2=1\Rightarrow y=\pm\frac{1}{2}x=−3y⇒x2=3y2⇒4y2=1⇒y=±21
+,Với y=\frac{1}{2}\Rightarrow x=-\frac{\sqrt{3}}{2}y=21⇒x=−23
+,Với y=-\frac{1}{2}\Rightarrow x=\frac{\sqrt{3}}{2}y=−21⇒x=23
Ta lại có:M=\sqrt{3}xy+y^2\le\frac{3x^2+y^2}{2}+y^2=\frac{3x^2+3y^2}{2}=\frac{3}{2}M=3xy+y2≤23x2+y2+y2=23x2+3y2=23
Nên GTLN của M là \frac{3}{2}23 đạt được khi \sqrt{3}x=y\Rightarrow3x^2=y^2\Rightarrow4x^2=1\Rightarrow x=\pm\frac{1}{2}3x=y⇒3x2=y2⇒4x2=1⇒x=±21
+,Với x=\frac{1}{2}\Rightarrow y=\frac{\sqrt{3}}{2}x=21⇒y=23
+,Với x=-\frac{1}{2}\Rightarrow y=-\frac{\sqrt{3}}{2}x=−21⇒y=−23
F=x3+y3+2xy=(x+y)3-3xy(x+y)+2xy
=(x+y)3-xy(3x+3y-2)
=20073-xy[3.2007-2]
làm tiếp đi
chú ý \(xy\le\frac{\left(x+y\right)^2}{4}\)(bđt AM-GM)
Đầu tiên tìm GTLN, GTNN của xy.
Không mất tính tổng quát giả sử:
\(x\ge y+1\)
\(\Leftrightarrow x-y-1\ge0\)
\(\Leftrightarrow x-y-1+xy\ge xy\)
\(\Leftrightarrow\left(x-1\right)\left(y+1\right)\ge xy\)
Từ đây ta suy được:
\(2006.1< 2005.2< 2004.3< ...< 1003.1004\)
Vậy \(min_{xy}=2006.1;max_{xy}=1003.1004\)
Ta lại có:
\(F=\left(x+y\right)^3-xy\left(3x+3y-2\right)\)
Thế vô là xong