Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta suy ra \(y\le1-3x\)
\(\Rightarrow\sqrt{xy}\le\sqrt{x\left(1-3x\right)}\)
Ta có \(A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\ge\frac{1}{x}+\frac{1}{\sqrt{x\left(1-3x\right)}}\ge\frac{1}{x}+\frac{1}{\frac{x+\left(1-3x\right)}{2}}=\frac{2}{2x}+\frac{2}{-2x+1}\)
\(=2\left(\frac{1}{2x}+\frac{1}{-2x+1}\right)\ge2.\frac{\left(1+1\right)^2}{2x-2x+1}=8\)
Vậy \(A\ge8\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=1-3x=y\\\frac{1}{2x}=\frac{1}{-2x+1}\\3x+y=1\end{cases}}\) \(\Leftrightarrow\) \(x=y=\frac{1}{4}\)
x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)
P=(x+y+1)(x^2+y^2)+4/(x+y)
>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)
x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8
minP=8
Ta có xy=2 => \(y=\frac{2}{x}\)
ta có : M = \(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}=\frac{1}{x}+x+\frac{3}{2x+\frac{2}{x}}+\frac{2}{\frac{2}{x}}-x\)= \(\left(x+\frac{1}{x}\right)+\frac{3}{2\left(\frac{1}{x}+x\right)}\)
Áp dụng BĐT AM - GM ta được :
M \(\ge2\sqrt{\frac{\left(\frac{1}{x}+x\right)3}{\left(\frac{1}{x}+x\right)2}}=2\sqrt{\frac{3}{2}}=\sqrt{6}\)
Dấu "="......
Vậy Min M = \(\sqrt{6}\) Khi ......
============
bấm đi bấm lại 2 lần , máy lỗi , phần tìm x,y bạn tự làm nhé
=========================
Bài này thì có 2 cách Làm cách cồng kềnh nhất vậy :))
\(M=x^3\left(\frac{1}{xy+9}+\frac{1}{xz+9}\right)+y^3\left(\frac{1}{xy+9}+\frac{1}{yz+9}\right)+z^3\left(\frac{1}{yz+9}+\frac{1}{xz+9}\right)\)
C-S ; ta được : \(\frac{1}{xy+9}+\frac{1}{xz+9}\ge\frac{4}{x\left(y+z\right)+18}=\frac{4}{x\left(9-x\right)+18}=\frac{4}{3x+27-\left(x-3\right)^2}\ge\frac{4}{3x+27}\)
Suy ra : \(M\ge\frac{4}{3}\) . sigma \(\frac{x^3}{x+9}\)
Tiếp tục AD C-S ; ta được : \(\frac{x^3}{x+9}+\frac{3}{16}\left(x+9\right)+\frac{9}{4}\ge\frac{9}{4}x\Rightarrow\frac{x^3}{x+9}\ge\frac{33}{16}x-\frac{63}{16}\)
=> sig ma \(\frac{x^3}{x+9}\ge\frac{33}{16}\left(x+y+z\right)-\frac{63}{16}.3=\frac{27}{4}\)
Suy ra : M \(\ge\frac{4}{3}.\frac{27}{4}=9\)
" = " <=> x = y = z = 3
Xong film