K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

Theo đề ta suy ra  \(y\le1-3x\)

\(\Rightarrow\sqrt{xy}\le\sqrt{x\left(1-3x\right)}\)

Ta có  \(A=\frac{1}{x}+\frac{1}{\sqrt{xy}}\ge\frac{1}{x}+\frac{1}{\sqrt{x\left(1-3x\right)}}\ge\frac{1}{x}+\frac{1}{\frac{x+\left(1-3x\right)}{2}}=\frac{2}{2x}+\frac{2}{-2x+1}\)

\(=2\left(\frac{1}{2x}+\frac{1}{-2x+1}\right)\ge2.\frac{\left(1+1\right)^2}{2x-2x+1}=8\)

Vậy  \(A\ge8\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x=1-3x=y\\\frac{1}{2x}=\frac{1}{-2x+1}\\3x+y=1\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=\frac{1}{4}\)

23 tháng 9 2019

\(P=\frac{\left(x-y\right)^2+2xy}{x-y+1}=\frac{t^2+8}{t+1}\)  (với t = x - y > 0)

\(=\frac{t^2-4t+4}{t+1}+\frac{4\left(t+1\right)}{t+1}=\frac{\left(t-2\right)^2}{t+1}+4\ge4\)

Đẳng thức xảy ra khi t = 2 -> x = y + 2 thay vào giả thiết xy = 4 tính tiếp v.v....

True?

22 tháng 5 2017

x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)

P=(x+y+1)(x^2+y^2)+4/(x+y)

>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)

x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8 

minP=8 

23 tháng 5 2017

Ta có xy=2 => \(y=\frac{2}{x}\)

ta có : M = \(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}=\frac{1}{x}+x+\frac{3}{2x+\frac{2}{x}}+\frac{2}{\frac{2}{x}}-x\)\(\left(x+\frac{1}{x}\right)+\frac{3}{2\left(\frac{1}{x}+x\right)}\)

Áp dụng BĐT AM - GM ta được :

\(\ge2\sqrt{\frac{\left(\frac{1}{x}+x\right)3}{\left(\frac{1}{x}+x\right)2}}=2\sqrt{\frac{3}{2}}=\sqrt{6}\)

Dấu "="......

Vậy Min M = \(\sqrt{6}\) Khi ......

============

bấm đi bấm lại 2 lần , máy lỗi , phần tìm x,y bạn tự làm nhé 

=========================

3 tháng 10 2021

Bài này thì có 2 cách Làm cách cồng kềnh nhất vậy :))

\(M=x^3\left(\frac{1}{xy+9}+\frac{1}{xz+9}\right)+y^3\left(\frac{1}{xy+9}+\frac{1}{yz+9}\right)+z^3\left(\frac{1}{yz+9}+\frac{1}{xz+9}\right)\)

C-S ; ta được : \(\frac{1}{xy+9}+\frac{1}{xz+9}\ge\frac{4}{x\left(y+z\right)+18}=\frac{4}{x\left(9-x\right)+18}=\frac{4}{3x+27-\left(x-3\right)^2}\ge\frac{4}{3x+27}\)

Suy ra : \(M\ge\frac{4}{3}\) . sigma \(\frac{x^3}{x+9}\) 

Tiếp tục AD C-S ; ta được : \(\frac{x^3}{x+9}+\frac{3}{16}\left(x+9\right)+\frac{9}{4}\ge\frac{9}{4}x\Rightarrow\frac{x^3}{x+9}\ge\frac{33}{16}x-\frac{63}{16}\)

=> sig ma \(\frac{x^3}{x+9}\ge\frac{33}{16}\left(x+y+z\right)-\frac{63}{16}.3=\frac{27}{4}\)

Suy ra : M \(\ge\frac{4}{3}.\frac{27}{4}=9\)

" = " <=> x = y = z = 3

Xong film 

3 tháng 10 2021

Ủa làm đề  hay s vậy ? Toàn mấy câu thi HSG