K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2015

ta có |x-2| \(\ge\)0 và (y+1)^2\(\ge\)0 mà |x-2|+(y+1)^2=0

=>|x-2|=0 và (y+1)^2=0

(=)x=2 và y=-1

=>x+y=2+(-1)=-1

Lập bảng xét dấu là ra thôi bài này dễ mà

3 tháng 5 2016

ns nghe thì dễ nhưng trình bày sao

10 tháng 6 2017

Do ( x+6) ^2 > = 0 với mọi x

    / y - 7 / > = 0 với mọi x

=> x = -6 , y = 7

=> x + y = 1

10 tháng 6 2017

Vì \(\hept{\begin{cases}\left(x+6\right)^2\ge0\forall x\\\left|y-7\right|\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+6\right)^2+\left|y-7\right|\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+6\right)^2=0\\\left|y-7\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x+6=0\\y-7=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-6\\y=7\end{cases}}}\)

\(\Rightarrow x+y=-6+7=1\)