Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 2018.2020 + 2019.2021
= (2020 - 2).2020 + 2019.(2019 + 2)
= 20202 - 2.2020 + 20192 + 2.2019
= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B
=> A = B
b) Ta có B = 964 - 1= (932)2 - 12
= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1)
(932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80
mà A = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10
=> A < B
c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)
=> A < B
d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)
=> A < B
a) \(2011.2013+2012.2014\)
\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)
\(=2012^2-1+2013^2-1\)
\(=2012^2+2013^2-2\)
\(\Rightarrow2011.2013+2012.2014=2012^2+2013^2-2\)
b) \(\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9+1\right)\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^2-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^4-1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^8-1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^{16}-1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^{32}-1\right)\left(9^{32}+1\right)\)
\(=\dfrac{1}{10}\left(9^{64}-1\right)\)
\(=\dfrac{9^{64}-1}{10}\)
Ta có: \(9^{64}-1=\dfrac{10\left(9^{64}-1\right)}{10}\)
Mà \(\dfrac{10\left(9^{64}-1\right)}{10}>\dfrac{9^{64}-1}{10}\)
\(\Rightarrow\left(9-1\right)\left(9^2+1\right)\left(9^4+1\right)\left(9^8+1\right)\left(9^{16}+1\right)\left(9^{32}+1\right)< 9^{64}-1\)
c) Ta có:
\(\dfrac{x^2-y^2}{x^2+xy+y^2}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-xy}\left(1\right)\)
Vì x>y>0, ta có:
\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\left(2\right)\)
Vì x>y>0 nên \(\left(x+y\right)^2-xy< \left(x+y\right)^2\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(\dfrac{x-y}{x+y}< \dfrac{x^2-y^2}{x^2+xy+y^2}\)
a) Ta có:
\(2011.2013+2012.2014\)
\(=\left(2012-1\right)\left(2012+1\right)+\left(2013-1\right)\left(2013+1\right)\)
\(=2012^2-1+2013^2-1\)
\(=2012^2+2013^2-2\)
Vậy 2011.2013+2012.2014 = 20122 + 20132 - 2
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)