Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{3}{2ab}\)
\(A\ge\frac{4}{2ab+a^2+b^2}+\frac{3}{2ab}\)
\(A\ge\frac{4}{\left(a+b\right)^2}+\frac{3}{\frac{\left(a+b\right)^2}{2}}\)
\(A\ge4+6=10\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2ab\\a+b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\a+b=1\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)
Vậy Min A = 10 <=> a = b = 1/2
Trả lời :
Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)
Study ưell
Không chắc
https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này
Áp dụng BĐT Cauchy cho 2 số không âm ta có :
\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)
Đẳng thức xảy ra khi và chỉ khi \(a=4\)
Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)
\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)
\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)
\(\le2+\frac{4.1006^2}{2012^2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)
\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
...
1) \(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt{\frac{a}{16}.\frac{1}{a}}+\frac{15.4}{16}=\frac{17}{4}\)
Dấu "=" xảy ra <=> a = 4
Vậy min A = 17/4 tại a = 4
2) \(B=3x+\frac{16}{x^3}=x+x+x+\frac{16}{x^3}\ge4\sqrt[4]{x.x.x.\frac{16}{x^3}}=8\)
Dấu "=" xảy ra <=> x = 2
Vậy min B = 8 tại x = 2
3) 0<x<2 tìm min \(C=\frac{9x}{2-x}+\frac{2}{x}\)
Ta có: \(C=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x}{2-x}+\frac{2-x}{x}+1\ge2\sqrt{\frac{9x}{2-x}.\frac{2-x}{x}}+1=7\)
Dấu "=" xảy ra <=> x = 1/2 thỏa mãn
Vậy min C = 7 đạt tại x = 1/2
a, x^3-y^2-y=1/3
=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0
=> x > 0
Tương tự : y,z đều > 0
Tk mk nha
ta có hpt
<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)
Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)
Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)
=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)
=>\(y\ge z\) (2)
với y>= z, từ pt(2) =>z>=x (3)
Từ 91),(2),(3)
=> x=y=z>0 (ĐPCM)
Với x=y=z>0, thay vào pt(1), Ta có
\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)
<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)
<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V
^_^