Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)
\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)
=> \(A\ge-\frac{2}{3}\)
\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)
Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a
c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)
\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)
KL:.............................
\(S=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{3}{2xy}+4xy\ge\frac{4}{\frac{1}{4}}+\frac{3}{2xy}+384xy-380xy\)
\(\ge16+2\cdot24-380xy=64-380xy\)
+) \(\frac{1}{2}\ge x+y\ge2\sqrt{xy}\Rightarrow\frac{1}{4}\ge4xy\Leftrightarrow\frac{1}{16}\ge xy\)
\(\Rightarrow-380xy\ge380\cdot\frac{1}{16}=23.75\)
\(\Rightarrow S\ge64-23.75=40.25\)
Dấu = xảy ra khi x=y=1/4
Tại sao \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\le\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\) ?
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Có : (a-b)^2 >= 0
<=> a^2-2ab+b^2 >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+2ab+b^2 >= 4ab
<=> (a+b)^2 >= 4ab (1) <=> 2ab <= (a+b)^2/2 (2)
Với a,b > 0 thì chia 2 vế của (1) cho (a+b).ab , ta được :
a+b/ab >= 4/a+b
<=> 1/a + 1/b >= 4/a+b (*)
Áp dụng bđt (*) và bđt (2) thì :
P = 1/2xy + 1/x^2+4y^2 = 1/4xy + (1/4xy + 1/x^2+4y^2) >= 1/2.x.2y + 4/x^2+4xy+y^2
>= 1 : (x+2y)^2/2 + 4/(x+2y)^2 = 1 : 1/2 +4/1 = 6
Dấu "='' xảy ra <=> x=2y và x+2y=1
<=> x=0,5 ; y=0,25
Vậy GTNN của P = 6 <=> x=0,5 và y=0,25
k mk nha
mk mới làm cách khác bạn
P=\(\frac{1}{x^2+4y^2}\)+\(\frac{1}{4xy}\)+\(\frac{1}{4xy}\)
áp dụng BĐT phụ 1/a +1/b >= 4/a+b
=> \(\frac{1}{x^2+4y^2}\)+\(\frac{1}{4xy}\)>= \(\frac{4}{\left(x+2y\right)^2}\)=4 (1)
áp dụng BĐT phụ 1/ab >= 4/(a+b)^2
+) 1/4xy = 1/2.1/2xy
1/2xy>= 4/(x+2y)^2 = 4
=> 1/4xy >= 1/2 . 4 = 2 (2)
cộng (1) và (2) => P>=6
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra khio x=y=1/2
Bổ đề: \(2xy\le x^2+y^2\)
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{4}{2xy}\ge\frac{1}{x^2+y^2}+\frac{4}{x^2+y^2}=\frac{5}{x^2+y^2}\ge5\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
Do x,y > 0 nên ta xét \(\frac{1}{A}=-\frac{1}{2}-\frac{1}{2xy}\)
Áp dụng bđt Cauchy ta có \(2xy\le x^2+y^2\Rightarrow\frac{1}{2xy}\ge\frac{1}{x^2+y^2}\Rightarrow-\frac{1}{2xy}\le-\frac{1}{x^2+y^2}\)
Từ đó suy ra \(\frac{1}{A}=-\frac{1}{2}-\frac{1}{2xy}\le-\frac{1}{2}-\frac{1}{x^2+y^2}=-\frac{1}{2}-1=-\frac{3}{2}\)
\(\Rightarrow A\ge-\frac{2}{3}\). Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}}{2}\) (x,y>0)
Vậy giá trị nhỏ nhất của A bằng \(-\frac{2}{3}\) khi \(x=y=\frac{\sqrt{2}}{2}\)