Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(DK:x,y>0\)
Ta co:
\(A=\frac{x+y+2\sqrt{xy}}{xy}.\frac{\sqrt{xy}\left(x+y\right)}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
b.
Ta lai co:
\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}}{4}=1\)
Dau '=' xay ra khi \(x=y=4\)
Vay \(A_{min}=1\)khi \(x=y=4\)
\(A=\left(\dfrac{1}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{y}-\sqrt{x}}\right):\dfrac{2\sqrt{xy}}{x-y}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}}{x-y}:\dfrac{2\sqrt{xy}}{x-y}=\dfrac{-2\sqrt{y}}{2\sqrt{xy}}=\dfrac{-1}{\sqrt{x}}=\dfrac{-\sqrt{x}}{x}\)
b, Ta có \(A=\dfrac{-1}{\sqrt{x}}=1\Leftrightarrow\sqrt{x}=-1\left(voli\right)\)
Vậy pt vô nghiệm
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v