Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PP : biến đổi tương đương
Bài làm
Ta có \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+x\right)}{xy\left(x+y\right)}\ge\dfrac{4xy}{\left(x+y\right)xy}\)
Vì x , y >0 , ta suy ra (x+y)2 \(\ge\)4xy
\(\Leftrightarrow\left(x+y\right)^2-4xy\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
Hay (x-y)2 \(\ge\)0 ( điều này luôn đúng )
Vậy..........
Lời giải:
Xét hiệu \((x+y)\left(\frac{1}{x}+\frac{1}{y}\right)-4=\left(1+\frac{x}{y}+\frac{y}{x}+1\right)-4\)
\(=\frac{x}{y}+\frac{y}{x}-2=\frac{x^2+y^2}{xy}-2=\frac{x^2+y^2-2xy}{xy}=\frac{(x-y)^2}{xy}\geq 0, \forall x,y>0\)
Do đó \((x+y)\left(\frac{1}{x}+\frac{1}{y}\right)\geq 4\) (đpcm)
Dấu "=" xảy ra khi \((x-y)^2=0\Leftrightarrow x=y\)
Khó quá. Đúng là Câu Hỏi Hay!!
a)Áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân theo vế 2 BĐT trên có:
\(A\ge9\sqrt[3]{abc\cdot\dfrac{1}{abc}}=9\)
Khi \(a=b=c\)
Bài 2:
a)Sửa đề \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)
Khi \(x=y\)
b)Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:
\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{4}{2b}=\dfrac{2}{b}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c};\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\ge\dfrac{2}{a}\)
Cộng theo vế 3 BĐT trên ta có:
\(2VT\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2VP\Leftrightarrow VT\ge VP\)
Khi \(a=b=c\)
Câu 1: Với \(a;b;c>0\), theo bất đẳng thức Cauchy:
\(a+b+c\ge3.\sqrt[3]{abc}\). Dấu "=" xảy ra khi \(a=b=c\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3.\sqrt[3]{\dfrac{1}{abc}}\). Dấu "=" xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)
Nhân theo vế ta được \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
\(\Rightarrow MinA=9\)
Dấu "=" xảy ra khi a = b = c
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) ( sửa đề )
\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)
\(\Leftrightarrow3+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\ge9\)
Ta sẽ CM BĐT trên đúng bằng sử dụng Cô - Si , ta có :
\(\left\{{}\begin{matrix}\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}=2\\\dfrac{y}{z}+\dfrac{z}{y}\ge2\sqrt{\dfrac{y}{z}.\dfrac{z}{y}}=2\\\dfrac{x}{z}+\dfrac{z}{x}\ge2\sqrt{\dfrac{x}{z}.\dfrac{z}{x}}=2\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\ge6\)
\(\Leftrightarrow3+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\ge9\)
\(\Rightarrowđpcm.\)
\("="\Leftrightarrow x=y=z\)
a: Thiếu vế phải rồi bạn
b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)
Áp dụng bất đẳng thức AM-GM:
\(\dfrac{x^3}{x^2+y^2}=\dfrac{x\left(x^2+y^2\right)-xy^2}{x^2+y^2}=x-\dfrac{xy^2}{x^2+y^2}\ge x-\dfrac{xy^2}{2xy}=x-\dfrac{y}{2}\)
Vì \(x,y>0\) nên theo bất đẳng thức Cô-si ta có: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}=2\). Dấu "=" xảy ra <=> x = y
Đặt \(\dfrac{x}{y}+\dfrac{y}{x}=a\left(a\ge2\right)\Rightarrow a^2=\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+2\)
Bpt \(\Leftrightarrow a^2-2+4\ge3a\Leftrightarrow a^2-3a+2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\)(luôn đúng vì \(a\ge2\))
Dấu "=" xảy ra <=> a = 2 <=> x = y
Áp dụng BĐT Cauchy - Schwarz:
\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}=\dfrac{4^2}{a+b}=\dfrac{16}{a+b}\)
\("="\Leftrightarrow x=y=2\)
Áp dụng BĐT Cauchy dạng Engel , ta có :
\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}=\dfrac{16}{a+b}\)
\("="\Leftrightarrow\left\{{}\begin{matrix}x=y=2\\a=b\end{matrix}\right.\)
BĐT đã cho tương đương với
\(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2-4xy\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(Luôn đúng)
Vậy: BĐT cần c/m đúng