K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

Ta có : \(x^3+2xy\left(x+y\right)+y^2+x^2+y^2+xy+2\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+2xy\left(x+y\right)+xy+2\)

\(=\left(-1\right)^3+3xy-2xy+xy-2xy+\left(-1\right)^2+2\)

\(=\left(-1\right)+1+2=2\)

19 tháng 3 2017

Nhân phân phối là ra thôi

a)

\(VT=\left(x-1\right)\left(x+1\right)=x.x+x.1-1.x+\left(-1\right).1\)

\(=\left(x^2-1\right)+\left(x-x\right)=x^2-1+0=x^2-1=VP\Rightarrow dccm\)

c) thay vì c/m A=B ta chứng Minh B=A

\(VP=\left(x+1\right)\left(x^2-x+1\right)=\left(x^3-x^2+x\right)+\left(x^2-x+1\right)\)

\(=\left(x^3+1\right)+\left(-x^2+x^2\right)+\left(x-x\right)=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)\(=x^3+1+0+0=x^3+1=VT\Rightarrow VT=VP\Rightarrow dpcm\)

10 tháng 8 2019

A = 5x(x - y) - y(5x - y)

A = 5x2 - 5xy - 5xy + y2

A = 5x2 - 10xy + y2 (1)

Thay x = -1; y = 3 vào (1), ta có:

5.(-1)2 - 10.(-1).3 + 32 = 44

B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)

B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy

B = 12y3 + 6xy (1)

Thay x = 5; y = -1 vào (1), ta có:

12.(-1)3 + 6.5.(-1) = -42

C = 5x2(x - y2) + 3x(xy- y) - 5x3 

C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3 

C = -2x2y2 - 3xy (1)

Thay x = -2; y = -5 vào (1), ta có:

-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230

D = 6x2(y- xy + 2x2y) - 3xy(2xy - x+ 4x3)

D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y

D = -3x3y (1)

Thay x = 11; y = -1 vào (1), ta có:

-3.113.(-1) = 3993

x+y+1=0 suy ra x+y=1

Làm câu A nhé B,C tương tự

A= x^2.(x+y-2)-(xy+y^2-2y)+(y+x-1)=0-y.(x+y-2)+1=1

Hok tốt

xin lỗi nha x+y=-1 nhé

a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{8}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)

\(=\dfrac{-1}{8}+\dfrac{1}{12}-\dfrac{1}{18}=-\dfrac{7}{72}\)

b: \(B=\left(-1\cdot3\right)^2+\left(-1\right)\cdot3-1+27\)

\(=9-3-1+27\)

=36-4=32

c: \(C=-0.7xy^2-2x^2y-4.5xy\)

\(=-0.7\cdot\dfrac{1}{2}\cdot1-2\cdot0.25\cdot\left(-1\right)-4.5\cdot0.5\cdot\left(-1\right)\)

\(=\dfrac{-7}{20}+\dfrac{1}{2}+\dfrac{9}{2}\cdot\dfrac{1}{2}\)

\(=\dfrac{12}{5}\)

9 tháng 2 2020

\(C=x^3+x^2y-2x^2-x^2y-xy^2+2xy+2y+2x-2\)

\(C=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

Thay x+y-2 =0 vào C ta được:
\(C=x^2\cdot0-xy\cdot0+2\cdot0+2=2\)

9 tháng 2 2020

\(C=x^3+x^2y-2x^2-x^2y-xy^2+2xy+2y+2x-2\)

\(=\left(x^3+x^2y-2x^2\right)-\left(x^2y+xy^2-2xy\right)+\left(2y+2x-4\right)+2\)

\(=x^2\left(x+y-2\right)-xy\left(x+y-2\right)+2\left(x+y-2\right)+2\)

Thay \(x+y-2=0\)vào biểu thức ta được: \(C=2\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Lời giải:

\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(=(x^3+x^2y-2x^2)-(xy+y^2-2y)+y+x-1\)

\(=x^2(x+y-2)-y(x+y-2)+(y+x-2)+1\)

\(=x^2.0-y.0+0+1=1\)

\(N=x^3-2x^2-xy^2+2xy+2y-2x-2\)

\(=(x^3-2x^2+x^2y)-(x^2y+xy^2-2xy)+2y+2x-4-4x+2\)

\(=x^2(x-2+y)-xy(x+y-2)+2(y+x-2)-4x+2\)

\(=x^2.0-xy.0+2.0-4x+2=2-4x\) (không tính được giá trị cụ thể, bạn thử xem lại đề)

\(P=(x^4+x^3y-2x^3)+(x^3y+x^2y^2-2x^2y)-x(x+y-2)\)

\(=x^3(x+y-2)+x^2y(x+y-2)-x(x+y-2)\)

\(=x^3.0+x^2y.0-x.0=0\)