Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử cả 3 số xyz đều nhỏ hơn 1
=>x+y+z<1+1+1=3
ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3
từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1
Theo Cauche có:
\(\left(x+x+y+z\right)\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4\sqrt[4]{x^2yz}.4\sqrt[4]{\frac{1}{x^2.y.z}}=16\)
=> \(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{16}{2x+y+z}\). Tương tự có:
\(\frac{2}{y}+\frac{1}{x}+\frac{1}{z}\ge\frac{16}{x+2y+z}\) và \(\frac{2}{z}+\frac{1}{y}+\frac{1}{x}\ge\frac{16}{x+y+2z}\)
=> \(16.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le\frac{2}{x}+\frac{1}{y}+\frac{1}{z}+\frac{2}{y}+\frac{1}{x}+\frac{1}{z}+\frac{2}{z}+\frac{1}{x}+\frac{1}{y}\)
\(16.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le4.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=4.4=16\)
Chia cả 2 vế cho 16 => ĐPCM
Từ gt, ta có \(\left(xyz\right)^2=\left[x\left(1-x\right)\right]\left[y\left(1-y\right)\right]\left[z\left(1-z\right)\right]\)
Sử dụng BĐT AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:
\(x\left(1-x\right)\le\frac{1}{4};y\left(1-y\right)\le\frac{1}{4};z\left(1-z\right)\le\frac{1}{4}\)
Nhân các bđt trên lại theo vế =. \(\left(xyz\right)^2\le\frac{1}{64}\)hay \(xyz\le\frac{1}{8}\)
Gọi A là số lớn nhất trong các số x(1-y);y(1-z); z(1-y)
khi đó từ gt, ta có:
\(3A\ge x\left(1-y\right)+y\left(1-z\right)+z\left(1-x\right)\)
\(=1-xyz-\left(1-x-y-z+xy+yz+zx-xyz\right)\)
\(=1-xyz-\left(1-x\right)\left(1-y\right)\left(1-z\right)\)
\(=1-2xyz\ge\frac{3}{4}\)
từ các đánh giá trên => \(A\ge\frac{1}{4}\)
=> đpcm
Áp dụng BĐT BSC và BĐT Cosi:
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge17\left(x+y+z\right)+\frac{2.\left(1+1+1\right)^2}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{18}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{17}{x+y+z}+\frac{1}{x+y+z}\)
\(\ge2\sqrt{17\left(x+y+z\right).\frac{17}{x+y+z}}+\frac{1}{1}\)
\(=35\)
\(\Rightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y + z ≤ 1 ta có :
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=17x+17y+17z+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)
\(=\left(18x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(18z+\frac{2}{z}\right)-\left(x+y+z\right)\)
\(\ge2\sqrt{18x\cdot\frac{2}{x}}+2\sqrt{18y\cdot\frac{2}{y}}+2\sqrt{18z\cdot\frac{2}{z}}-1=12\cdot3-1=35\)( đpcm )
Dấu "=" xảy ra <=> x=y=z=1/3
Đặt \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\x+z=c\end{matrix}\right.\Rightarrow a+b+c=2\)
\(bdt\Leftrightarrow a+b\ge4abc\)
Ta có: \(4VT=4\left(a+b\right)=\left(a+b+c\right)^2\left(a+b\right)\ge4c\left(a+b\right)^2\ge16abc=4VP\)
Vậy bđt đc cm