K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

Ta có:

\(x^3+y^3+z^3=3xyz\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)

\(x+y+z\neq 0\Rightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow 2(x^2+y^2+z^2-xy-yz-xz)=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

Ta thấy \((x-y)^2; (y-z)^2;(z-x)^2\geq 0\)

\(\Rightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\). Dấu bằng xảy ra khi

\((x-y)^2=(y-z)^2=(z-x)^2=0\Leftrightarrow x=y=z\)

Khi đó:

\(P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=(1+1)(1+1)(1+1)=8\)

22 tháng 8 2017

1)

\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)

22 tháng 8 2017

dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)

\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)

\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)

6 tháng 12 2017

Bài 1

\(a^2-2a+6b+b^2=-10\)

<=>\(a^2-2a+1+b^2+6b+9=0\)

<=>\((a-1)^2+(b+3)^2=0\)

Ta lại có: \((a-1)^2\ge0 \)

\((b+3)^2\ge0\)

=> \((a-1)^2+(b+3)^2\ge0\)

\((a-1)^2+(b+3)^2=0\)

=>(a-1)2=0=>a=1

(b+3)2=0=>b=-3

Vậy a=1,b=-3

Bài 2

Ta có: \(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}= \frac{x+y}{z}+1+\frac{x+z}{y}+1+ \frac{y+z}{x}+1 -3 \)

\(=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}-3=(x+y+z)( \frac{1}{z}+\frac{1}{x}+\frac{1}{y})-3=0-3=-3 \)

3 tháng 7 2017

bạn có thể cho mình lời giải đc k ?

9 tháng 8 2017

1, Ta có: \(x+y=9\Rightarrow\left(x+y\right)^2=81\)

\(\Rightarrow x^2+2xy+y^2=81\)

\(\Rightarrow x^2+y^2=45\)

\(\Rightarrow x^2+y^2-2xy=9\)

\(\Rightarrow\left(x-y\right)^2=9\Rightarrow\left[{}\begin{matrix}x-y=3\\x-y=-3\end{matrix}\right.\)

\(A=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(\Rightarrow\left[{}\begin{matrix}A=3.63=189\\A=-3.63=-189\end{matrix}\right.\)

Vậy...

16 tháng 11 2018

\(\)\(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\rightarrow\left(a;b;c\right)\)

Viết lại đề: \(\left\{{}\begin{matrix}a+b+c=2\\2ab-c^2=4\end{matrix}\right.\) . Tính \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^{2018}\)

\(\Leftrightarrow\left(a+b+c\right)^2-2ab+c^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-2ab+c^2=0\)

\(\Leftrightarrow a^2+b^2+2c^2+2bc+2ac=0\)

\(\Leftrightarrow\left(a^2+c^2+2ac\right)+\left(b^2+c^2+2bc\right)=0\)

\(\Leftrightarrow\left(a+c\right)^2+\left(b+c\right)^2=0\)

\(\Leftrightarrow....\)

25 tháng 12 2018

xyz=1

=>x=1,y=1,z=1

Thay x=1,y=1,z=1 vào P ta được:

P=(119-1)(15-1)(11890-1)=0