K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

1/x +1/y +1/z=1/x+y+z

<=>xy+yz+zx/xyz=1/x+y+z

<=>x^2y +xy^2+ 2xyz +y^2z +zx^2 +xyz +z^2x=0

<=>(x^2y +zx^2) +(xy^2 +2xyz +z^2x) +(y^2z +yz^2)=0

<=>x^2(y+z) +x(y+z)^2 +zy(y+z)=0

<=>(y+z)( x^2 +xy +xz zy)=0

<=>(y+z)[ x(x+y) +z(x+y) ]=0

<=>(y+z)(x+y)(x+z)=0

<=>x= -y : y= -z : z= -x

Vậy phương trình kia trở thành;

-1/y^2009 + 1/y^2009 +1/z^2009=1/ -y^2009 + y^2009 +z^2009

<=> 1/z^2009 = 1/z^2009

<=> z=z (luôn đúng)

AH
Akai Haruma
Giáo viên
7 tháng 9 2017

Lời giải:

\(A=\frac{x^2}{1-x}+\frac{y^2}{1-y}+\frac{z^2}{1-z}=-(x+1)+\frac{1}{1-x}-(y+1)+\frac{1}{1-y}-(z+1)+\frac{1}{1-z}\)

\(\Leftrightarrow A=-6+(1-x)+\frac{1}{1-x}+(1-y)+\frac{1}{1-y}+(1-z)+\frac{1}{1-z}\)

Do \(1>x,y,z\) nên áp dụng BĐT AM-GM cho các số dương ta có:

\(\left\{\begin{matrix} (1-x)+\frac{1}{1-x}\geq 2\\ (1-y)+\frac{1}{1-y}\geq 2\\ (1-z)+\frac{1}{1-z}\geq 2\end{matrix}\right.\Rightarrow A\geq -6+2+2+2\)

\(\Leftrightarrow A\geq 0\)

Vậy \(A_{\min}=0\). Dấu bằng xảy ra khi \(x=y=z=0\)

7 tháng 9 2017

k phải cộng z^2/1-z mà là \(\dfrac{1}{x+y}+x+y\)

26 tháng 5 2017

Hình giải tích trong không gianHình giải tích trong không gian

các bạn giải giúp mình mấy câu bất đẳng thức này với 1) tìm GTLN a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\) b)y=\(\dfrac{x}{x^2+2}\) x>0 2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\) 3)cho x,y>0 thỏa mãn x+y=2 . CM a)xy(x2+y2)\(\le2\) b)x3y3(x3+y3)\(\le2\) 4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\) tìm GTLN A= (3-x)(4-y)(2x+3y) 5)...
Đọc tiếp

các bạn giải giúp mình mấy câu bất đẳng thức này với

1) tìm GTLN

a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)

b)y=\(\dfrac{x}{x^2+2}\) x>0

2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)

3)cho x,y>0 thỏa mãn x+y=2 . CM

a)xy(x2+y2)\(\le2\)

b)x3y3(x3+y3)\(\le2\)

4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)

tìm GTLN A= (3-x)(4-y)(2x+3y)

5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1

tìm GTLN của P=x2y2z2u

6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)

8)cho 3 số dương a,b,c có tổng bằng 3 .

tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)

ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi

3
17 tháng 2 2019

\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)

\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)

Tương tự cho các số còn lại rồi cộng vào sẽ được

\(S\le\dfrac{3}{2}\)

Dấu "=" khi a=b=c=1

Vậy

17 tháng 2 2019

\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)

\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)

Cmtt rồi cộng vào ta đc đpcm

Dấu "=" khi x = y = z = 1/3

22 tháng 5 2017

Ôn tập chương III

AH
Akai Haruma
Giáo viên
6 tháng 7 2017

Lời giải:

Dễ thấy đường thẳng $d_1$ đi qua điểm \(M(1,-1,0)\Rightarrow \overrightarrow{MA}=(4,-2,5)\)

Khi đó, nếu $(P)$ là mp chứa \(d_1,MA\) thì \(\overrightarrow{n_P}=[\overrightarrow{d_1},\overrightarrow{MA}]=(1,-3,-2)\)

\(\Rightarrow \text{PTMP}: x-3y-2z-4=0\)

Ta thấy \(C\in (d_2),C\in (P)\Rightarrow \) dễ dàng tìm được tọa độ điểm \(C(-1,-1,-1)\)

Lại có \(B=AC\cap d_1\). Và PTĐT \(AC\): \(\frac{x+1}{3}=\frac{y+1}{-1}=\frac{z+1}{3}\)

\(\Rightarrow B(2,-2,2)\)

Do đó \(BC=\sqrt{19}\)

Câu 1:(2 điểm): a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2018}\). Tính giá trị của biểu thức: \(A=\dfrac{1}{a^{2017}}+\dfrac{1}{b^{2017}}+\dfrac{1}{c^{2017}}\) b) Rút gọn biểu thức: \(B=\dfrac{\sqrt{\sqrt{5}+2}\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\) Câu 2:(1.5 điểm): Giải phương trình: \(x^2+\dfrac{4x^2}{x^2-4x+4}=5\) Câu 3:(1.5 điểm): Tìm số tự nhiên y để...
Đọc tiếp

Câu 1:(2 điểm):
a) Cho a,b,c là các số thực thỏa mãn a+b+c= 2018 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2018}\). Tính giá trị của biểu thức: \(A=\dfrac{1}{a^{2017}}+\dfrac{1}{b^{2017}}+\dfrac{1}{c^{2017}}\)
b) Rút gọn biểu thức: \(B=\dfrac{\sqrt{\sqrt{5}+2}\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
Câu 2:(1.5 điểm):
Giải phương trình: \(x^2+\dfrac{4x^2}{x^2-4x+4}=5\)
Câu 3:(1.5 điểm):
Tìm số tự nhiên y để \(\left(y^2+1\right)x^3+\left(y^3-1\right)x\) chia hết cho 6, biết x thuộc N*
Câu 4:(2,5 điểm):
Cho ABC nhọn, ba đường cao AD, BF, CE cắt nhau tại H.
a) Giả sử HB = 6cm; HF = 3cm; CE = 11cm và CH>HE. Tính độ dài CH;EH.
b)Gọi I là giao điểm EF và AH. Cmr \(\dfrac{IH}{AI};\dfrac{HD}{AD}\)
c) Gọi K là điểm nằm giữa C và D. Kẻ AS vuông góc HK tại S. Cm SK là phân giác của góc DSI
Câu 5:(1,5 điểm):
Cho tam giác ABC, I là điểm nằm trong tam giác. Các tia AI, BI, CI cắt các cạnh BC, AC, AB lần lượt tại các điểm D, E, F. Cmr \(\dfrac{AI}{ID}+\dfrac{BI}{IE}+\dfrac{CI}{IF}\ge6\)
Câu 6:(1.5 điểm):
Cho x, y, z > 0. Cmr \(\dfrac{x^2-z^2}{y+z}+\dfrac{z^2-y^2}{x+y}+\dfrac{y^2-x}{x+z}\ge0\)

CÁC AE GIÚP EM VỚI (Chỉ cần làm 1trong 6 bài)

0
26 tháng 5 2017

Hình giải tích trong không gian

AH
Akai Haruma
Giáo viên
23 tháng 3 2017

Lời giải:

Vì mặt cầu tiếp xúc với đường thẳng nên độ dài bán kính chính bằng khoảng cách từ tâm đến đường thẳng đó

Ta thấy đường thẳng $(d)$ đi qua \(M(-1,2,-3)\) và có vector chỉ phương là \(\overrightarrow{u}=(2,1,-1)\)

\(\Rightarrow d(A,d)=\frac{|[\overrightarrow{u},\overrightarrow{MA}]|}{|\overrightarrow{u}|}=\frac{10\sqrt{3}}{\sqrt{6}}=5\sqrt{2}=R\rightarrow R^2=50\)

Do đó PTMC là: \((x-1)^2+(y+2)^2+(z-3)^2=50\)

Đáp án C

23 tháng 3 2017

cảm ơn bạn nhiều!!!