Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có \(\left(x+\frac{1}{y}\right)\in Z\) và \(\left(y+\frac{1}{x}\right)\in Z\)\(\Rightarrow\)\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)
hay \(\left(xy+\frac{1}{xy}+2\right)\in Z\)\(\Rightarrow\)\(\left(xy+\frac{1}{xy}\right)\in Z\)
Suy ra \(\left(xy+\frac{1}{xy}\right)^2\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}+2\right)\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}\right)\in Z\)
Vậy \(x^2y^2+\frac{1}{x^2y^2}\) là số nguyên (đpcm).
Vì \(x+\frac{1}{y}\in Z;y+\frac{1}{x}\in Z\)nên \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)
=>\(xy+\frac{1}{xy}\in Z\)
=>\(\left(xy+\frac{1}{xy}\right)^3\)
=>\(x^3y^3+\frac{1}{x^3y^3}+3\left(xy+\frac{1}{xy}\right)\)\(\in Z\)
=>ĐPCM
\(\orbr{\begin{cases}x=y=\pm1\\x=y=\pm2\end{cases}}\)
\(\text{Cách giải = ko biết :))}\)
x+1/y và y+1/x là các số nguyên
=> (x+1/y).(y+1/x) là số nguyên
<=> xy+1/xy+2 là số nguyên
<=> xy+1/xy là số nguyên
<=> (xy+1/xy)^2 là số tự nhiên
<=> x^2y^2+1/x^2y^2+2 là số tự nhiên
=> x^2y^2+1/x^2y^2 là số nguyên
=> ĐPCM
k mk nha
Ta có:
\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Nhân hai vế của đẳng thức với \(\left(\sqrt{x^2+1}-x\right),\) ta có:
\(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)\left(y+\sqrt{y^2+1}\right)=\left(\sqrt{x^2+1}-x\right)\)
\(\Leftrightarrow\) \(y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)
\(\Leftrightarrow\) \(x+y=\sqrt{x^2+1}-\sqrt{y^2+1}\left(1\right)\)
Mặt khác, \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Nhân hai vế của đẳng thức với \(\left(\sqrt{y^2+1}-y\right),\) ta có:
\(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{y^2+1}-y\right)\left(y+\sqrt{y^2+1}\right)=\sqrt{y^2+1}-y\)
\(\Leftrightarrow\) \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)
\(\Leftrightarrow\) \(x+y=\sqrt{y^2+1}-\sqrt{x^2+1}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) suy ra được \(x+y=0\)