K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)

\(\Leftrightarrow F=E\)

Từ đó ta có:

\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)

\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)

\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)

\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)

\(\Rightarrow F\ge\frac{1}{4}\)

Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)

25 tháng 3 2017

Bạn ơi, cho mình hỏi này

Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\)  và sao có  \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)  

Giải đáp tận tình hộ mình nhé.

11 tháng 1 2021

X3 + Y3 + Z3 = 3XYZ

<=> X3 + Y3 + Z3 - 3XYZ = 0

<=> ( X3 + Y3 ) + Z3 - 3XYZ = 0

<=> ( X + Y )3 - 3XY( X + Y ) + Z3 - 3XYZ = 0

<=> [ ( X + Y )3 + Z3 ] - 3XY( X + Y + Z ) = 0

<=> ( X + Y + Z )[ ( X + Y )2 - ( X + Y ).Z + Z2 - 3XY ] = 0

<=> ( X + Y + Z )( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0

<=> \(\orbr{\begin{cases}X+Y+Z=0\\X^2+Y^2+Z^2-XY-YZ-XZ=0\end{cases}}\)

+) X + Y + Z = 0 => \(\hept{\begin{cases}X+Y=-Z\\Y+Z=-X\\X+Z=-Y\end{cases}}\)

KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(\frac{X+Y}{Y}\right)\left(\frac{Y+Z}{Z}\right)\left(\frac{X+Z}{X}\right)=\frac{-Z}{Y}\cdot\frac{-X}{Z}\cdot\frac{-Y}{X}=-1\)

+) X2 + Y2 + Z2 - XY - YZ - XZ = 0

<=> 2( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0

<=> 2X2 + 2Y2 + 2Z2 - 2XY - 2YZ - 2XZ = 0

<=> ( X2 - 2XY + Y2 ) + ( Y2 - 2YZ + Z2 ) + ( X2 - 2XZ + Z2 ) = 0

<=> ( X - Y )2 + ( Y - Z )2 + ( X - Z )2 = 0 (1)

DỄ DÀNG CHỨNG MINH (1) ≥ 0 ∀ X,Y,Z

DẤU "=" XẢY RA <=> X = Y = Z

KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(1+\frac{Y}{Y}\right)\left(1+\frac{Z}{Z}\right)\left(1+\frac{X}{X}\right)=2\cdot2\cdot2=8\)

11 tháng 1 2021

Khi x + y + z = 0

=> x + y = -z

=> x + z = - y

=> y + z = - x

Khi đó M = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)

19 tháng 8 2018

Mang hết bài tập lên hỏi à, sao nhiều thế

19 tháng 8 2018

Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>

10 tháng 12 2019

Ta có: \(x^3+y^3+\frac{1}{3^3}-3xy.\frac{1}{3}=0\)

<=> \(\left(x+y+\frac{1}{3}\right)\left(x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y\right)=0\)

<=> \(\orbr{\begin{cases}x+y+\frac{1}{3}=0\left(1\right)\\x^2+y^2+\frac{1}{9}-xy-\frac{1}{3}x-\frac{1}{3}y=0\left(2\right)\end{cases}}\)

(1) <=> \(x+y=-\frac{1}{3}\)loại vì x > 0 ; y >0

( 2) <=> \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

vì \(\left(x-\frac{1}{3}\right)^2\ge0;\left(y-\frac{1}{3}\right)^2\ge0;\left(x-y\right)^2\ge0\)với mọi x, y

nên \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2\ge0\)với mọi x, y

Do đó: \(\left(x-\frac{1}{3}\right)^2+\left(y-\frac{1}{3}\right)^2+\left(x-y\right)^2=0\)

<=> \(x=y=\frac{1}{3}\)

10 tháng 12 2019

Làm tiếp:

Với \(x=y=\frac{1}{3}\)=> \(x+y=\frac{2}{3}\) thế vào P

ta có: \(P=\left(\frac{2}{3}+\frac{1}{3}\right)^3-\frac{3}{2}.\frac{2}{3}+2016=2016\)

17 tháng 11 2016

\(x^3+y^3+z^3=3xyz\)

\(x^3+y^3+z^3-3xyz=0\)

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(x^2+y^2+z^2-xy-xz-yz=0\left(x+y+z\ne0\right)\)

\(2\times\left(x^2+y^2+z^2-xy-xz-yz\right)=0\times2\)

\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)

\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)

\(\left[\begin{array}{nghiempt}x-y=0\\x-z=0\\y-z=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=y\\x=z\\y=z\end{array}\right.\)

x = y = z

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{x}{z}\right)\)

\(=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)\)

\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(=2^3\)

\(=8\)

1 tháng 3 2017

Làm sao để ra được dòng thứ 3 ak??

6 tháng 2 2017

1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)

\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm 

2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)

tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1

3) kiểm tra lại xem đề đã chuẩn chưa

22 tháng 2 2020

a, Ta có : \(\frac{3y}{4}=\frac{3y}{4}.1=\frac{3y}{4}.\frac{2x}{2x}=\frac{6xy}{8x}\) ( đpcm )

b, Ta có : \(6x^2y=6x^2y\)

=> \(3x^2.2y=\left(-3x^2\right).\left(-2y\right)\)

=> \(\frac{-3x^2}{2y}=\frac{3x^2}{-2y}\) ( đpcm )

c, Ta có : \(6x-6y=6x-6y\)

=> \(6x-6y=-6y+6x\)

=> \(6\left(x-y\right)=-6\left(y-x\right)\)

=> \(2\left(x-y\right).3=-2\left(y-x\right).3\)

=> \(\frac{2\left(x-y\right)}{3\left(y-x\right)}=\frac{-2}{3}\) ( đpcm )

22 tháng 2 2020

thank you