K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 11 2019

Theo Viet đảo, x và y là nghiệm của pt:

\(t^2-\left(m+1\right)t+m^2-2m+2=0\)

Để hệ đã cho có nghiệm \(\Leftrightarrow\Delta\ge0\)

\(\Rightarrow-3m^2+10m-7\ge0\Rightarrow1\le m\le\frac{7}{3}\)

Khi đó ta có: \(F=x^2+y^2=\left(x+y\right)^2-2xy\)

\(F=\left(m+1\right)^2-2\left(m^2-2m+2\right)\)

\(=-m^2+6m-3\)

Xét hàm \(f\left(m\right)=-m^2+6m-3\) trên \(\left[1;\frac{7}{3}\right]\)

\(-\frac{b}{2a}=3\notin\left[1;\frac{7}{3}\right]\) ; \(f\left(1\right)=2\) ; \(f\left(\frac{7}{3}\right)=\frac{50}{9}\)

\(\Rightarrow F_{max}=\frac{50}{9}\) khi \(m=\frac{7}{3}\)

\(F_{min}=2\) khi \(m=1\)

AH
Akai Haruma
Giáo viên
3 tháng 11 2017

Lời giải:

\(\left\{\begin{matrix} x+xy+y=2m+1\\ xy(x+y)=m^2+m\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} xy=2m+1-(x+y)\\ xy(x+y)=m^2+m\end{matrix}\right.\Rightarrow [2m+1-(x+y)](x+y)=m^2+m\)

Đặt \(x+y=t\Rightarrow t^2-t(2m+1)+m^2+m=0\)

Để pt có bộ nghiệm (x,y) duy nhất thì $t$ phải là duy nhất. Do đó:

\(\Delta=(2m+1)^2-4(m^2+m)=0\Leftrightarrow 1=0\)

(vô lý)

Do đó không tồn tại m để hệ có bộ nghiệm duy nhất.

6 tháng 11 2017

Dạng này làm như sau:

Đặt \(\left\{{}\begin{matrix}x+y=S\\xy=P\end{matrix}\right.\)

Sau đó biến đổi về phương trình bậc 2 theo ẩn S

Để hệ ban đầu có nghiệm duy nhất thì trước hết phương trình theo ẩn S có nghiệm duy nhất hoặc có 2 nghiệm trong đó có 1 nghiệm không thuộc tập xác định của hệ phương trình theo ẩn S, P. Đây mới chỉ là điều kiện cần.

Sau đó thế các nghiệm của S, P vào hệ rồi giải ra xem thử có nghiệm x, y hay không. Đây là điều kiện đủ. Xong 2 cái này thì mới kết luận là hệ có nghiệm duy nhất với m = ????

11 tháng 12 2020

\(\left\{{}\begin{matrix}x+y=2m-1\left(1\right)\\x^2+y^2=m^2+2m-3\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow\left(x+y\right)^2-2xy=m^2+2m-3\)

\(\Leftrightarrow\left(2m-1\right)^2-m^2-2m+3=2xy\)

\(\Leftrightarrow2xy=3m^2-6m+4\)

\(P_{min}\Leftrightarrow3m^2-6m+4\left(min\right)\)

\(3\left(m^2-2m+\dfrac{4}{3}\right)=3\left(m^2-2m+1+\dfrac{1}{3}\right)=3\left[\left(m-1\right)^2+\dfrac{1}{3}\right]=3\left(m-1\right)^2+1\ge1\)

\("="\Leftrightarrow m=1\)

1 tháng 10 2019

giúp mình với mình đang cần gấp

14 tháng 11 2017

Đặt S=x+y;P=xy giải ra :V

22 tháng 7 2020
https://i.imgur.com/Cc0M1NM.jpg
22 tháng 7 2020
https://i.imgur.com/s6RzLH6.jpg
11 tháng 8 2017

1/ \(\left\{{}\begin{matrix}x^3+y^3=1\left(1\right)\\x^2y+2xy^2+y^3=2\left(2\right)\end{matrix}\right.\)

Lấy (1). 2 - (2) ta được:

\(2x^3+y^3-x^2y-2xy^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)

Đến đây dễ rồi nhé ^^

2/ Ta viết lại pt thứ 2 của hệ:

\(y^2-4\left(x+2\right)y+16+16x-5x^2=0\)

\(\Leftrightarrow y^2-4\left(x+2\right)y+4\left(x+2\right)^2-9x^2=0\)

\(\Leftrightarrow\left[y-2\left(x+2\right)\right]^2-\left(3x\right)^2=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(y-5x-4\right)=0\)

Bạn làm tiếp nhé!

11 tháng 8 2017

3/ Ta viết lại pt thứ nhất của hệ

\(x^2-x\left(2y-3\right)+y^2-3y-4=0\)

\(\Leftrightarrow x^2-x\left(2y-3\right)+\dfrac{4y^2-12y+9}{4}-\dfrac{25}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{2y+3}{2}\right)^2-\left(\dfrac{5}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-y-4\right)\left(x-y+1\right)=0\)

Bạn làm tiếp được chứ?

4/ Viết lại pt thứ 2 của hệ

\(\left(y+\sqrt{x}\right)^2-\left(y\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\left(y-\sqrt{x}-y\sqrt{x}\right)\left(y-\sqrt{x}+y\sqrt{x}\right)=0\)

NV
24 tháng 8 2020

\(\Leftrightarrow\left\{{}\begin{matrix}y\left(x+y\right)=3x-y\\y^2\left(x+y\right)=x^2+xy\end{matrix}\right.\)

- Nếu 1 số bằng 0 thì số kia cũng bằng 0 và ngược lại nên \(\left(x;y\right)=\left(0;0\right)\) là 1 nghiệm

- Với \(xy\ne0\) chia vế cho vế:

\(\frac{y^2\left(x+y\right)}{y\left(x+y\right)}=\frac{x^2+xy}{3x-y}\Leftrightarrow\left(3x-y\right)y=x^2+xy\)

\(\Leftrightarrow3xy-y^2=x^2+xy\Leftrightarrow x^2-2xy+y^2=0\)

\(\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)

Thế vào pt đầu: \(x\left(2x+1\right)=3x\Leftrightarrow2x+1=3\Rightarrow x=1\Rightarrow y=1\)

Vậy pt có 2 cặp nghiệm: \(\left(x;y\right)=\left(0;0\right);\left(1;1\right)\)

2 tháng 10 2017

mini của mày chịch nhau à hả cu

2 tháng 10 2017

phắn =="