Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x^2y^2+1+1+\frac{1}{x^2y^2}=x^2y^2+2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}\)
\(\ge x^2y^2+\frac{1}{256x^2y^2}+2+\frac{255}{256.\left[\frac{\left(x+y\right)^2}{4}\right]^2}\ge2\sqrt{x^2y^2.\frac{1}{256x^2y^2}}+2+\frac{255}{256.\frac{1}{16}}\)
\(=\frac{1}{8}+2+\frac{255}{16}=\frac{289}{16}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Ta có : \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{2^2}{2}=2\)
\(\Rightarrow4\left(x^2+y^2\right)\ge8\)
Lại có : \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}=\frac{4}{2^2}=1\)
Do đó : \(P=4\left(x^2+y^2\right)+\frac{1}{xy}\ge8+1=9\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
Áp dụng BĐT Minicopski ta có:
\(T=\sqrt{x^4+\frac{1}{x^4}}+\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\left(x^2+y\right)^2+\left(\frac{1}{x^2}+\frac{1}{y}\right)^2}\)
\(\ge\sqrt{1^2+\left(\frac{4}{x^2+y}\right)^2}=\sqrt{1+\left(\frac{4}{1}\right)^2}=\sqrt{17}\)
Nên GTNN của T là \(\sqrt{17}\) khi \(\hept{\begin{cases}x=\sqrt{\frac{1}{2}}\\y=\frac{1}{2}\end{cases}}\)
Ta có:
\(A=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+\left(y^2+\frac{1}{8y}+\frac{1}{8y}\right)+\left(z^2+\frac{1}{8z}+\frac{1}{8z}\right)+\frac{6}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+3\sqrt[3]{y^2.\frac{1}{8y}.\frac{1}{8y}}+3\sqrt[3]{z^2.\frac{1}{8z}.\frac{1}{8z}}+\frac{6}{8}\frac{9}{x+y+z}\)
\(=\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{6}{8}.\frac{9}{\frac{3}{2}}=\frac{27}{4}\)
Dấu "=" xảy ra <=> x = y = z = 1/2
Vậy min A = 27/4 tại x = y = z = 1/2
ae giúp tôi với