Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3, A=(x-3)^2+(x-11)^2
\(\Rightarrow\)(X^2-3^2)+(x^2-11^2)
\(\Rightarrow\)(X^2-9)+(X^2-121)
Ta có :X^2 \(\ge\)0 và X^2 \(\ge\)0
\(\Rightarrow\)X^2 - 9 \(\le\)-9 và X^2- 121 \(\le\)-121
\(\Rightarrow\)(X^2-9)+(X^2-121)\(\le\)-130
Dấu = xảy ra khi : X=0
Vậy : Min A = -130 khi x=0
Mình mới lớp 7 sai thì thôi nhé
\(A=\left(x+y\right).\left(x^2-xy+y^2\right)-\left(x-y\right).\left(x^2+xy+y^2\right)=\left(x^3+y^3\right)-\left(x^3-y^3\right)=2y^3\)
=> Biểu thức A phụ thuộc vào giá trị của y
\(\left(x-1\right)^3+3x.\left(x-4\right)+1=0\Leftrightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)
\(\Leftrightarrow x^3-9x=0\Leftrightarrow x.\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)
\(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2\)
\(=2xy+2yz+2zx\)
\(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+xz\right)\)
\(VT=\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(VT=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2\)
\(VT=2xy+2yz+2xz\)
\(VT=2\left(xy+yz+xz\right)\)
\(VT=VP\left(đpcm\right)\)
* VT: vế trái
VP: vế phải
Mình sẽ làm theo đề bài của mình nếu đúng thì ... nha
Biến đổi vế phải ta có :
( x + y) [ ( x - y)^2 + xy ] = ( x + y)( x^2 - 2xy + y^2 + xy)
= ( x+ y)( x^2 - xy+ y^2)
= x^3 + y^3
VẬy VT = VP đẳng thức được CM
bậc của đa thức P(x) là bậc 7 nha
còn P(x) là j mk quên mất rùi hì!!
5676775675675675685687683563462362253645654756756787687687687696
Ta có 8+1=9
<=>23+1=32
mà 2x+1=3y
=>x=3;y=2
chúc bạn học giỏi, k cho mình nhé!!!^^
Từ \(\hept{\begin{cases}x-y=-10\\xy=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y-10\\\left(y-10\right)y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=y-10\\y^2-10y+2=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=y-10\\y=5+\sqrt{23};y=5-\sqrt{23}\end{cases}\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{23};y=5+\sqrt{23}\\x=-5-\sqrt{23};y=5-\sqrt{23}\end{cases}}}\)
Với \(x=-5+\sqrt{23};y=5+\sqrt{23}\Rightarrow\left|x+y\right|=2\sqrt{23}\)
Với \(x=-5-\sqrt{23};y=5-\sqrt{23}\Rightarrow\left|x+y\right|=\left|-2\sqrt{23}\right|=2\sqrt{23}\)
Thanks