K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng bđt AM-GM ta có

\(x^2-xy+y^2\ge x^2+y^2-\frac{x^2+y^2}{2}=\frac{x^2+y^2}{2}\)

\(\Rightarrow\frac{x+y}{x^2-xy+y^2}\le\frac{2\left(x+y\right)}{x^2+y^2}\le\frac{2\sqrt{2\left(x^2+y^2\right)}}{x^2+y^2}=\frac{2\sqrt{2}}{\sqrt{x^2+y^2}}\)

Dấu "=" xảy ra khi x=y=1

19 tháng 5 2019

Ta có : \(xy\left(x+y\right)^2\le\frac{1}{64}\)\(\Rightarrow\)\(\sqrt{xy\left(x+y\right)^2}\le\sqrt{\frac{1}{64}}\)

\(\Rightarrow\)\(\sqrt{xy}\left(x+y\right)\le\frac{1}{8}\)

ta cần c/m \(\sqrt{xy}\left(x+y\right)\le\frac{1}{8}\)

Thật vậy, ta có

Áp dụng BĐT : \(ab\le\frac{\left(a+b\right)^2}{4}\). Dấu "=" xảy ra \(\Leftrightarrow\)a = b

\(\sqrt{xy}\left(x+y\right)=\frac{1}{2}.2\sqrt{xy}\left(x+y\right)\le\frac{1}{2}.\frac{\left(x+2\sqrt{xy}+y\right)^2}{4}=\frac{\left(\sqrt{x}^2+2\sqrt{xy}+\sqrt{y}^2\right)^2}{4}.\frac{1}{2}\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^4}{8}=\frac{1}{8}\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{4}\)

9 tháng 12 2020

Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)

19 tháng 5 2017

1/ Sửa đề:   \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\)   \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\)   \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có:   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\)   \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\)   \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra    \(\Leftrightarrow\)    \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\)   \(\Leftrightarrow\)    \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)    \(\Leftrightarrow\)    x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\)   \(a^2+b^2+2ab-4ab\ge0\)    \(\Leftrightarrow\)    \(a^2-2ab+b^2\ge0\)   \(\Leftrightarrow\)   \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

12 tháng 5 2016

\(x+y=2\Rightarrow y=2-x\)

\(A=\sqrt{x^2+\left(2-x\right)^2}+\sqrt{x\left(2-x\right)}=\sqrt{2x^2-4x+4}+\sqrt{-x^2+2x}\)

\(A^2=x^2-2x+4+2\sqrt{2x^2-4x+4}.\sqrt{-x^2+2x}\)

\(+A\ge2\Leftrightarrow A^2\ge4\Leftrightarrow x^2-2x+4+2\sqrt{-2x^4+8x^3-12x^2+8x}\ge4\)

\(\Leftrightarrow2\sqrt{-2x^4+8x^3-12x^2+8x}\ge x\left(2-x\right)\)

\(\Leftrightarrow4\left(-2x^4+8x^3-12x^2+8x\right)\ge x^2\left(2-x\right)^2\text{ }\left(do\text{ }x\left(2-x\right)\ge0\right)\)

\(\Leftrightarrow x\left(2-x\right)\left(9x^2-18x+16\right)\ge0\)

Bất đẳng thức trên đúng vì :

\(x\ge0;\text{ }2-x=y\ge0;\text{ }9x^2-18x+16=9\left(x-1\right)^2+7>0\)

Vậy \(A\ge2\)

Tương tự, ta có thể chứng minh \(A\le\sqrt{6}\)

12 tháng 5 2016

Cách khác: \(x+y=2\Rightarrow x^2+y^2+2xy=4\Rightarrow x^2+y^2=4-2xy\)

Đặt \(t=\sqrt{xy};t\ge0;\text{ }t\le\frac{x+y}{2}=1\)

\(\sqrt{x^2+y^2}+\sqrt{xy}=\sqrt{4-2t^2}+t\)

\(+\sqrt{4-2t^2}+t\ge2\Leftrightarrow\sqrt{4-2t^2}\ge2-t\)

\(\Leftrightarrow4-2t^2\ge t^2-4t+4\text{ }\left(do\text{ }2-t>0\right)\)

\(\Leftrightarrow3t^2-4t\le0\Leftrightarrow t\left(3t-4\right)\le0\)

BĐT trên đúng đo \(t\ge0;\text{ }3t-4\le3.1-4=-1<0\)

Vậy \(\sqrt{4-2t^2}+t\ge2\)

Làm tương tự với vế còn lại.