Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong sách bài tập toán 7 tập 1, soắn 11, bài 115 có bài tương tự đấy bạn
Giả sử x+y=z là một số hữu tỉ, khi đó ta có y=z-x
vì z và x thuộc Q nên z-x thuộc Q, do đó y thuộc Q. Điều này trái với đề bài.
Vậy x+y là số vô tỉ
Chứng minh tương tự x-y là số vô tỉ
Giả sử x.y=z là một số hữu tỉ, khi đó ta có y=z\x. Vì x, y thuộc Q nên z\x thuộc Q,
do đó y thuộc Q. Điều này trái với đề bài. Vậy x.y là một số vô tỉ
Chứng minh tương tự x:y là số vô tỉ
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
Bài giải
Giả sử x + y = z là một số hữu tỉ. Như vậy ta có y = z - x. Nhưng hiệu của hai số hữu tỉ. Suy ra y là số hữu tỉ. Điều này trái với đầu bài (y là số vô tỉ)
Vậy x + y là một số vô tỉ
Trường hợp x . y chứng minh tương tự
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ